57,352 research outputs found

    LJGS: Gradual Security Types for Object-Oriented Languages

    Get PDF
    LJGS is a lightweight Java core calculus with a gradual security type system. The calculus guarantees secure information flow for sequential, class-based, typed object-oriented programming with mutable objects and virtual method calls. An LJGS program is composed of fragments that are checked either statically or dynamically. Statically checked fragments adhere to a security type system so that they incur no run-time penalty whereas dynamically checked fragments rely on run-time security labels. The programmer marks the boundaries between static and dynamic checking with casts so that it is always clear whether a program fragment requires run-time checks. LJGS requires security annotations on fields and methods. A field annotation either specifies a fixed static security level or it prescribes dynamic checking. A method annotation specifies a constrained polymorphic security signature. The types of local variables in method bodies are analyzed flow-sensitively and require no annotation. The dynamic checking of fields relies on a static points-to analysis to approximate implicit flows. We prove type soundness and non-interference for LJGS

    An Elliptic Curve-based Signcryption Scheme with Forward Secrecy

    Full text link
    An elliptic curve-based signcryption scheme is introduced in this paper that effectively combines the functionalities of digital signature and encryption, and decreases the computational costs and communication overheads in comparison with the traditional signature-then-encryption schemes. It simultaneously provides the attributes of message confidentiality, authentication, integrity, unforgeability, non-repudiation, public verifiability, and forward secrecy of message confidentiality. Since it is based on elliptic curves and can use any fast and secure symmetric algorithm for encrypting messages, it has great advantages to be used for security establishments in store-and-forward applications and when dealing with resource-constrained devices.Comment: 13 Pages, 5 Figures, 2 Table

    The C++0x "Concepts" Effort

    Full text link
    C++0x is the working title for the revision of the ISO standard of the C++ programming language that was originally planned for release in 2009 but that was delayed to 2011. The largest language extension in C++0x was "concepts", that is, a collection of features for constraining template parameters. In September of 2008, the C++ standards committee voted the concepts extension into C++0x, but then in July of 2009, the committee voted the concepts extension back out of C++0x. This article is my account of the technical challenges and debates within the "concepts" effort in the years 2003 to 2009. To provide some background, the article also describes the design space for constrained parametric polymorphism, or what is colloquially know as constrained generics. While this article is meant to be generally accessible, the writing is aimed toward readers with background in functional programming and programming language theory. This article grew out of a lecture at the Spring School on Generic and Indexed Programming at the University of Oxford, March 2010

    Exploiting the Hierarchical Structure of Rule-Based Specifications for Decision Planning

    Get PDF
    Rule-based specifications have been very successful as a declarative approach in many domains, due to the handy yet solid foundations offered by rule-based machineries like term and graph rewriting. Realistic problems, however, call for suitable techniques to guarantee scalability. For instance, many domains exhibit a hierarchical structure that can be exploited conveniently. This is particularly evident for composition associations of models. We propose an explicit representation of such structured models and a methodology that exploits it for the description and analysis of model- and rule-based systems. The approach is presented in the framework of rewriting logic and its efficient implementation in the rewrite engine Maude and is illustrated with a case study.

    Reify Your Collection Queries for Modularity and Speed!

    Full text link
    Modularity and efficiency are often contradicting requirements, such that programers have to trade one for the other. We analyze this dilemma in the context of programs operating on collections. Performance-critical code using collections need often to be hand-optimized, leading to non-modular, brittle, and redundant code. In principle, this dilemma could be avoided by automatic collection-specific optimizations, such as fusion of collection traversals, usage of indexing, or reordering of filters. Unfortunately, it is not obvious how to encode such optimizations in terms of ordinary collection APIs, because the program operating on the collections is not reified and hence cannot be analyzed. We propose SQuOpt, the Scala Query Optimizer--a deep embedding of the Scala collections API that allows such analyses and optimizations to be defined and executed within Scala, without relying on external tools or compiler extensions. SQuOpt provides the same "look and feel" (syntax and static typing guarantees) as the standard collections API. We evaluate SQuOpt by re-implementing several code analyses of the Findbugs tool using SQuOpt, show average speedups of 12x with a maximum of 12800x and hence demonstrate that SQuOpt can reconcile modularity and efficiency in real-world applications.Comment: 20 page
    corecore