252 research outputs found

    Analysis of explicit and implicit discrete-time equivalent-control based sliding mode controllers

    Get PDF
    Different time-discretization methods for equivalent-control based sliding mode control (ECB-SMC) are presented. A new discrete-time sliding mode control scheme is proposed for linear time-invariant (LTI) systems. It is error-free in the discretization of the equivalent part of the control input. Results from simulations using the various discretized SMC schemes are shown, with and without perturbations. They illustrate the different behaviours that can be observed. Stability results for the proposed scheme are derived

    Comparisons between implicit and explicit discrete-time implementations of equivalent-control-based sliding mode controllers: input and output chattering suppression via the implicit method

    No full text
    This paper presents a set of experimental results concerning the sliding mode control of an electro-pneumatic system. The controller is implemented via a micro-processor as a discrete-time input. Three discrete-time control strategies are considered for the implementation of the discontinuous part of the sliding mode controller: explicit discretizations with and without saturation, and an implicit discretization (that is very easy to implement with a projection on the interval [−1, 1]). While the explicit implementation is known to generate numerical chattering, the implicit one is expected to significantly reduce chattering while keeping the accuracy. The experimental results reported in this work remarkably confirm that the implicit discrete-time sliding mode supersedes the explicit ones, with several important features: chattering in the control input is almost eliminated (while the explicit and saturated controllers behave like high-frequency bang-bang inputs), the input magnitude depends only on the perturbation size and is independent of the controller gain and sampling time. On the contrary the explicit controller shows obvious chattering for all sampling times, its magnitude increases as the controller gain increases, and it does not reduce when the sampling period augments. The tracking errors arecomparable for both methods, though the implicit method keeps the precision when the control gain increases, which is not the case for the explicit one. Introducing a saturation in the explicit controller does not allow to significantly improve the explicit controller behaviour

    Discrete-time twisting controller without numerical chattering: analysis and experimental results with an implicit method

    Get PDF
    International audienceIn this note, we present an implementation of the twisting controller on an electropneumatic plant for a tracking control problem. Implicit and explicit discrete-time twisting controllers are considered, and some implementation details are provided. Experimental results are provided and analyzed. They sustain the theoretical superiority of the implicitly discretized version, as shown in previous work. The main advantages of the implicit method are better tracking and drastic reduction in the input and output chattering. This is achieved without modifying the controller structure compared to its continuous-time version

    Multivalued robust tracking control of fully actuated Lagrange systems: Continuous and discrete–time algorithms

    Get PDF
    International audienceIn this paper the robust trajectory tracking problem of a class of nonlinear systems described by the Euler–Lagrange equations of motion is studied. We start considering a plant under the effects of an unknown external perturbation and also with uncertainties on its parameters. After that a class of passivity-based multivalued control laws is proposed and the well–posedness together with the stability of the closed–loop are established in the continuous–time setting. The discrete–time version of the plant and the controller are studied and well–posedness together with stability results are obtained, using the so-called implicit discretization approach introduced in [1, 2]. Numerical simulations are presented and demonstrate the effectiveness of the proposed discrete-time controller

    Comparison between explicit and implicit discrete-time implementations of sliding-mode controllers

    Get PDF
    International audienceDifferent time-discretization methods for sliding mode control (SMC) are presented. A new discrete-time sliding mode control scheme is proposed for linear time-invariant (LTI) systems. It is error-free in the discretization of the equivalent part of the control input. Results from simulations using the various discretized SMC schemes are shown, with and without perturbations. They illustrate the different behaviours that can be observed

    Adaptive Discrete Second Order Sliding Mode Control with Application to Nonlinear Automotive Systems

    Full text link
    Sliding mode control (SMC) is a robust and computationally efficient model-based controller design technique for highly nonlinear systems, in the presence of model and external uncertainties. However, the implementation of the conventional continuous-time SMC on digital computers is limited, due to the imprecisions caused by data sampling and quantization, and the chattering phenomena, which results in high frequency oscillations. One effective solution to minimize the effects of data sampling and quantization imprecisions is the use of higher order sliding modes. To this end, in this paper, a new formulation of an adaptive second order discrete sliding mode control (DSMC) is presented for a general class of multi-input multi-output (MIMO) uncertain nonlinear systems. Based on a Lyapunov stability argument and by invoking the new Invariance Principle, not only the asymptotic stability of the controller is guaranteed, but also the adaptation law is derived to remove the uncertainties within the nonlinear plant dynamics. The proposed adaptive tracking controller is designed and tested in real-time for a highly nonlinear control problem in spark ignition combustion engine during transient operating conditions. The simulation and real-time processor-in-the-loop (PIL) test results show that the second order single-input single-output (SISO) DSMC can improve the tracking performances up to 90%, compared to a first order SISO DSMC under sampling and quantization imprecisions, in the presence of modeling uncertainties. Moreover, it is observed that by converting the engine SISO controllers to a MIMO structure, the overall controller performance can be enhanced by 25%, compared to the SISO second order DSMC, because of the dynamics coupling consideration within the MIMO DSMC formulation.Comment: 12 pages, 7 figures, 1 tabl

    Modified Implicit Discretization of the Super-Twisting Controller

    Full text link
    In this paper a novel discrete-time realization of the super-twisting controller is proposed. The closed-loop system is proven to be globally asymptotically stable in the absence of a disturbance by means of Lyapunov theory. Furthermore, the steady-state error in the disturbed case is computed analytically and shown to be independent of the parameters. The steady-state error only depends on the sampling time and the unknown disturbance. The proposed discrete-time controller is compared to previously published discrete-time super-twisting controllers by means of the controller structure. In extensive simulation studies the proposed controller is evaluated comparative to known controllers. The continuous-time super-twisting controller is capable of rejecting any unknown Lipschitz-continuous perturbation. Furthermore, the convergence time decreases, if any of the gains is increased. The simulations demonstrate that the systems closed in the loop with each of the known controllers lose one of these properties, introduce discretization-chattering effects, or do not yield the same accuracy level as with the proposed controller. The proposed controller, in contrast, is beneficial in terms of the above described properties of the continuous-time super-twisting controller

    Experimental Comparisons Between Implicit and Explicit Implementations of Discrete-Time Sliding Mode Controllers: Toward Input and Output Chattering Suppression

    Get PDF
    International audienceThis brief presents a set of experimental results concerning the sliding mode control of an electropneumatic system. Two discrete-time control strategies are considered: an explicit and an implicit (that is very easy to implement with a projection on the interval [−1, 1]) Euler discretizations. While the explicit implementation is known to generate numerical chattering , the implicit one is expected to significantly reduce chattering while keeping the accuracy. The experimental results reported in this brief remarkably confirm that the implicit discrete-time sliding mode supersedes the explicit ones, with several important features: chattering in the control input is almost eliminated (while the explicit and saturated controllers behave like high-frequency bang–bang inputs), the input magnitude depends only on the perturbation size and is independent of the controller gain and sampling time
    • …
    corecore