827 research outputs found

    Agri-Food Traceability Management using a RFID System with Privacy Protection

    Get PDF
    In this paper an agri-food traceability system based on public key cryptography and Radio Frequency Identification (RFID) technology is proposed. In order to guarantee safety in food, an efficient tracking and tracing system is required. RFID devices allow recording all useful information for traceability directly on the commodity. The security issues are discussed and two different methods based on public cryptography are proposed and evaluated. The first algorithm uses a nested RSA based structure to improve security, while the second also provides authenticity of data. An experimental analysis demonstrated that the proposed system is well suitable on PDAs to

    Efficient and Low-Cost RFID Authentication Schemes

    Get PDF
    Security in passive resource-constrained Radio Frequency Identification (RFID) tags is of much interest nowadays. Resistance against illegal tracking, cloning, timing, and replay attacks are necessary for a secure RFID authentication scheme. Reader authentication is also necessary to thwart any illegal attempt to read the tags. With an objective to design a secure and low-cost RFID authentication protocol, Gene Tsudik proposed a timestamp-based protocol using symmetric keys, named YA-TRAP*. Although YA-TRAP* achieves its target security properties, it is susceptible to timing attacks, where the timestamp to be sent by the reader to the tag can be freely selected by an adversary. Moreover, in YA-TRAP*, reader authentication is not provided, and a tag can become inoperative after exceeding its pre-stored threshold timestamp value. In this paper, we propose two mutual RFID authentication protocols that aim to improve YA-TRAP* by preventing timing attack, and by providing reader authentication. Also, a tag is allowed to refresh its pre-stored threshold value in our protocols, so that it does not become inoperative after exceeding the threshold. Our protocols also achieve other security properties like forward security, resistance against cloning, replay, and tracking attacks. Moreover, the computation and communication costs are kept as low as possible for the tags. It is important to keep the communication cost as low as possible when many tags are authenticated in batch-mode. By introducing aggregate function for the reader-to-server communication, the communication cost is reduced. We also discuss different possible applications of our protocols. Our protocols thus capture more security properties and more efficiency than YA-TRAP*. Finally, we show that our protocols can be implemented using the current standard low-cost RFID infrastructures.Comment: 21 pages, Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), Vol 2, No 3, pp. 4-25, 201

    A Taxonomy of Security Threats and Solutions for RFID Systems

    Get PDF
    RFID (Radio Frequency Identification) is a method of wireless data collection technology that uses RFID tags or transponders to electronically store and retrieve data. RFID tags are quickly replacing barcodes as the “identification system of choice” [1]. Since RFID devices are electronic devices, they can be hacked into by an outsider, and their data can be accessed or modified without the user knowing. New threats to RFID-enabled systems are always on the horizon. A systematic classification should be used to categorize these threats to help reduce confusion. This paper will look at the problem of security threats towards RFID systems, and provide a taxonomy for these threats

    A Survey of RFID Authentication Protocols Based on Hash-Chain Method

    Get PDF
    Security and privacy are the inherent problems in RFID communications. There are several protocols have been proposed to overcome those problems. Hash chain is commonly employed by the protocols to improve security and privacy for RFID authentication. Although the protocols able to provide specific solution for RFID security and privacy problems, they fail to provide integrated solution. This article is a survey to closely observe those protocols in terms of its focus and limitations.Comment: Third ICCIT 2008 International Conference on Convergence and Hybrid Information Technolog

    Lightweight Cryptography for Passive RFID Tags

    Get PDF

    Vulnerabilities in first-generation RFID-enabled credit cards

    Get PDF
    Credit cards ; Radio frequency identification systems

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios
    corecore