101,915 research outputs found

    Comparative of Delay Tolerant Network Routings and Scheduling using Max-Weight, Back Pressure and ACO

    Get PDF
    Network management and Routing is supportively done by performing with the nodes, due to infrastructure-less nature of the network in Ad hoc networks or MANET. The nodes are maintained itself from the functioning of the network, for that reason the MANET security challenges several defects. Routing process and Scheduling is a significant idea to enhance the security in MANET. Other than, scheduling has been recognized to be a key issue for implementing throughput/capacity optimization in Ad hoc networks. Designed underneath conventional (LT) light tailed assumptions, traffic fundamentally faces Heavy-tailed (HT) assumption of the validity of scheduling algorithms. Scheduling policies are utilized for communication networks such as Max-Weight, backpressure and ACO, which are provably throughput optimality and the Pareto frontier of the feasible throughput region under maximal throughput vector. In wireless ad-hoc network, the issue of routing and optimal scheduling performs with time varying channel reliability and multiple traffic streams. Depending upon the security issues within MANETs in this paper presents a comparative analysis of existing scheduling policies based on their performance to progress the delay performance in most scenarios. The security issues of MANETs considered from this paper presents a relative analysis of existing scheduling policies depend on their performance to progress the delay performance in most developments

    Security in heterogeneous wireless networks

    Get PDF
    The proliferation of a range of wireless devices, from the cheap low power resource starved sensor nodes to the ubiquitous cell phones and PDA\u27s has resulted in their use in many applications. Due to their inherent broadcast nature Security and Privacy in wireless networks is harder than the wired networks. Along with the traditional security requirements like confidentiality, integrity and non-repudiation new requirements like privacy and anonymity are important in wireless networks. These factors combined with the fact that nodes in a wireless network may have different resource availabilities and trust levels makes security in wireless networks extremely challenging. The functional lifetime of sensor networks in general is longer than the operational lifetime of a single node, due to limited battery power. Therefore to keep the network working multiple deployments of sensor nodes are needed. In this thesis, we analyze the vulnerability of the existing key predistribution schemes arising out of the repeated use of fixed key information through multiple deployments. We also develop SCON, an approach for key management that provides a significant improvement in security using multiple key pools. SCON performs better in a heterogeneous environment. We present a key distribution scheme that allows mobile sensor nodes to connect with stationary nodes of several networks. We develop a key distribution scheme for a semi ad-hoc network of cell phones. This scheme ensures that cell phones are able to communicate securely with each other when the phones are unable to connect to the base station. It is different from the traditional ad hoc networks because the phones were part of a centralized network before the base station ceased to work. This allows efficient distribution of key material making the existing schemes for ad hoc networks ineffective. In this thesis we present a mechanism for implementing authenticated broadcasts which ensure non-repudiation using identity based cryptography. We also develop a reputation based mechanism for the distributed detection and revocation of malicious cell phones. Schemes which use the cell phone for secure spatial authentication have also been presented

    Sustainable Network by Enhancing Attribute-Based Selection Mechanism Using Lagrange Interpolation

    Get PDF
    The security framework in Ad-hoc Networks (ANET) continues to attract the attention of researchers, although significant work has been accomplished already. Researchers in the last couple of years have shown quite an improvement in Identity Dependent Cryptography (IDC). Security in ANET is hard to attain due to the vulnerability of links (Wireless). IDC encompasses Polynomial Interpolations (PI) such as Lagrange, curve-fitting, and spline to provide security by implementing Integrated Key Management (IKM). The PI structure trusts all the available nodes in the network and randomly picks nodes for the security key generation. This paper presents a solution to the trust issues raised in Lagrange’s-PI (LI) utilizing an artificial neural network and attribute-based tree structure. The proposed structure not only improves the trust factor but also enhances the accuracy measures of LI to provide a sustainable network system. Throughput, PDR, noise, and latency have been increased by 47%, 50%, 34%, and 30%, respectively, by using LI and incorporating the aforementioned techniques

    Multipath Routing of Fragmented Data Transfer in a Smart Grid Environment

    Full text link
    The purpose of this paper is to do a general survey on the existing communication modes inside a smart grid, the existing security loopholes and their countermeasures. Then we suggest a detailed countermeasure, building upon the Jigsaw based secure data transfer [8] for enhanced security of the data flow inside the communication system of a smart grid. The paper has been written without the consideration of any factor of inoperability between the various security techniques inside a smart gridComment: 5 pages, 2 figure
    • …
    corecore