1,681 research outputs found

    Solving a Class of LP Problems with a Primal-Dual Logarithmic Barrier Method

    Get PDF
    Applying a higher order primal-dual logarithmic barrier method for solving large real-life linear programming problems is addressed in this paper. The efficiency of interior point algorithm on these problems is compared with the one of the state-of-the-art simplex code MINOS version 5.3. Based on such experience, a wide class of LP problems is identified for which logarithmic barrier approach seems advantageous over the simplex one. Additionally, some practical rules for model builders are derived that should allow them to create problems that can easily be solved with logarithmic barrier algorithms

    Advances in design and implementation of optimization software

    Get PDF
    Developing optimization software that is capable of solving large and complex real-life problems is a huge effort. It is based on a deep knowledge of four areas: theory of optimization algorithms, relevant results of computer science, principles of software engineering, and computer technology. The paper highlights the diverse requirements of optimization software and introduces the ingredients needed to fulfill them. After a review of the hardware/software environment it gives a survey of computationally successful techniques for continuous optimization. It also outlines the perspective offered by parallel computing, and stresses the importance of optimization modeling systems. The inclusion of many references is intended to both give due credit to results in the field of optimization software and help readers obtain more detailed information on issues of interest

    High performance interior point methods for three-dimensional finite element limit analysis

    Get PDF
    The ability to obtain rigorous upper and lower bounds on collapse loads of various structures makes finite element limit analysis an attractive design tool. The increasingly high cost of computing those bounds, however, has limited its application on problems in three dimensions. This work reports on a high-performance homogeneous self-dual primal-dual interior point method developed for three-dimensional finite element limit analysis. This implementation achieves convergence times over 4.5× faster than the leading commercial solver across a set of three-dimensional finite element limit analysis test problems, making investigation of three dimensional limit loads viable. A comparison between a range of iterative linear solvers and direct methods used to determine the search direction is also provided, demonstrating the superiority of direct methods for this application. The components of the interior point solver considered include the elimination of and options for handling remaining free variables, multifrontal and supernodal Cholesky comparison for computing the search direction, differences between approximate minimum degree [1] and nested dissection [13] orderings, dealing with dense columns and fixed variables, and accelerating the linear system solver through parallelization. Each of these areas resulted in an improvement on at least one of the problems in the test set, with many achieving gains across the whole set. The serial implementation achieved runtime performance 1.7× faster than the commercial solver Mosek [5]. Compared with the parallel version of Mosek, the use of parallel BLAS routines in the supernodal solver saw a 1.9× speedup, and with a modified version of the GPU-enabled CHOLMOD [11] and a single NVIDIA Tesla K20c this speedup increased to 4.65×

    Acceleration of a Full-scale Industrial CFD Application with OP2

    Get PDF
    corecore