730 research outputs found

    Real-time refocusing using an FPGA-based standard plenoptic camera

    Get PDF
    Plenoptic cameras are receiving increased attention in scientific and commercial applications because they capture the entire structure of light in a scene, enabling optical transforms (such as focusing) to be applied computationally after the fact, rather than once and for all at the time a picture is taken. In many settings, real-time inter active performance is also desired, which in turn requires significant computational power due to the large amount of data required to represent a plenoptic image. Although GPUs have been shown to provide acceptable performance for real-time plenoptic rendering, their cost and power requirements make them prohibitive for embedded uses (such as in-camera). On the other hand, the computation to accomplish plenoptic rendering is well structured, suggesting the use of specialized hardware. Accordingly, this paper presents an array of switch-driven finite impulse response filters, implemented with FPGA to accomplish high-throughput spatial-domain rendering. The proposed architecture provides a power-efficient rendering hardware design suitable for full-video applications as required in broadcasting or cinematography. A benchmark assessment of the proposed hardware implementation shows that real-time performance can readily be achieved, with a one order of magnitude performance improvement over a GPU implementation and three orders ofmagnitude performance improvement over a general-purpose CPU implementation

    Computer vision algorithms on reconfigurable logic arrays

    Full text link
    corecore