10 research outputs found

    ACFlow: An open source toolkit for analytical continuation of quantum Monte Carlo data

    Full text link
    The purpose of analytical continuation is to establish a real frequency spectral representation of single-particle or two-particle correlation function (such as Green's function, self-energy function, and dynamical susceptibilities) from noisy data generated in finite temperature quantum Monte Carlo simulations. It requires numerical solutions of a family of Fredholm integral equations of the first kind, which is indeed a challenging task. In this paper, an open source toolkit (dubbed ACFlow) for analytical continuation of quantum Monte Carlo data is presented. We at first give a short introduction to the analytical continuation problem. Next, three primary analytical continuation algorithms, including maximum entropy method, stochastic analytical continuation, and stochastic optimization method, as implemented in this toolkit are reviewed. And then we elaborate major features, implementation details, and basic usage of this toolkit. Finally, four representative examples are shown to demonstrate usefulness and flexibility of the ACFlow toolkit.Comment: 26 pages, 7 figure

    A Probe into Propagators

    Full text link
    HonorsInterdisciplinary PhysicsUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/167885/1/jianif.pd

    Dynamical mean-field theory studies on real materials

    Get PDF
    Numerical studies on strongly correlated fermionic systems are very complicated and still provide essential problems. The main reason is the exponential growth of the un- derlying Hilbert state space with the system size and the fermionic sign problem for Monte Carlo studies. Among the most widely employed numerical techniques for study- ing two-dimensional quantum many-body systems are cluster extensions of the dynamical mean-field theory (DMFT), e.g. dynamical cluster approximation (DCA). They map an infinitely large multi-dimensional lattice problem to a one-dimensional impurity problem. In 2015 it was shown that the density matrix renormalisation group (DMRG) used as an impurity solver for DMFT (DMFT+DMRG) on the imaginary-frequency axis allows to solve multi-site and multi-band problems extremely fast compared to other solvers. Within this thesis, we further develop this DMRG+DMFT approach to apply the method on real material settings. The step from artificial, completely degenerate multi-band mod- els with simple dispersion relations on a Bethe lattice, studied in 2015, to systems with realistic band structures and lifted degeneracies involves more challenges than originally suspected. In this thesis, we will first recapitulate relevant methods for our approach like matrix prod- uct states, the density matrix renormalisation group and several time evolution methods. In this context we will present several improvements ranging from optimised time evo- lutions to entanglement based optimisations of tensor networks. Second, we will present a very detailed description of the dynamical mean field theory. We will focus on both methodological aspects and implementation details. This chapter is intended to allow other researcher to implement their own DMFT code using DMRG as an impurity solver. Third, we will discuss three different models to show the extent of problems DMRG+ DMFT is able to solve. We will focus on multi-site DCA calculations in the case of the two-dimensional Hubbard model and show that DMRG allows to tackle systems with intermediate interaction strengths at low temperatures, which are unsolvable with other solvers. In the second case, the real material Sr2VO4, we will show the first two-site DCA results for a realistic three-band model. In contrast to assumptions, partly reintroducing the momentum dependence of the self-energy does not improve agreement between exper- imental observations and theoretical results. Finally, we will move on to another realistic three-band model, which describes Sr2RuO4, to show how to deal with the influence of spin-orbit coupling on DMFT. We will present the first low-temperature results for this material and will confirm previous results of simplified model calculations.Numerische Untersuchungen stark korrelierter fermionischer Systeme sind schwierig und beinhalten noch heute essentielle Probleme. Die HauptgrĂŒnde dafĂŒr sind das exponen- tielle Wachstum des Hilbertraumes der QuantenzustĂ€nde mit der SystemgrĂ¶ĂŸe und das fermionische Vorzeichenproblem bei Monte-Carlo-Rechnungen. Eine der am hĂ€ufigsten verwendeten Methoden zur Untersuchung zweidimensionaler Gittersysteme sind Cluster- Erweiterungen der dynamische Molekularfeld Theory (DMFT), wie zum Beispiel die dy- namische Cluster Approximation (DCA). Diese Methoden bilden mehrdimensionale Git- tersysteme auf eindimensionale Störstellen-Probleme ab. 2015 wurde gezeigt, dass DMFT auf der imaginĂ€ren Frequenzachse kombiniert mit der Dichtematrix-Renormierungsgruppe (DMFT+DMRG) Mehrband- und Multisite-Systeme schneller lösen kann, als wenn an- dere Störstellen-Löser verwendet werden. In dieser Arbeit entwickeln wir diesen Ansatz weiter und wenden ihn auf Modelle realer Materialen an. Am Anfang dieser Arbeit besprechen wir relevante Methoden fĂŒr DMRG+ DMFT, wie zum Beispiel Matrix-Produkt-ZustĂ€nde, die Dichtematrix-Renormierungs- gruppe und mehrere Zeitentwicklungs-Methoden. In diesem Zusammenhang werden wir auch mehrere Verbesserungen besprechen, die von methodischen Anpassungen von Zeit- entwicklungen bis hin zur Neuordnung des Tensornetzwerkes basierend auf VerschrĂ€n- kungs-Eigenschaften reichen. Danach werden wir uns detailliert mit den methodologischen und programmiertechnischen Aspekten von DMFT beschĂ€ftigen. Dieses Kapitel dient als Grundlage fĂŒr andere Forscher, die eigene DMRG+DMFT-Codes programmieren wollen. Abschließend werden wir drei verschiedene Modelle besprechen, um das Ausmaß der Sys- teme zu zeigen, die mit diesem Ansatz gelöst werden können. Wir werden uns im Kon- text des Hubbard-Modells detailliert mit Multisite-DCA beschĂ€ftigen und zeigen, dass DMRG+DMFT Ergebnisse fĂŒr Systeme mit mittleren WechselwirkungsstĂ€rken bei niedri- gen Temperaturen erzeugen kann. Das ist mit anderen Störstellen-Lösern bisher nicht möglich. Im zweiten Fall beschĂ€ftigen wir uns mit Strontiumvanadat Sr2VO4 und werden die ersten Zweisite-DCA-Ergebnisse fĂŒr ein realistisches Dreiband-Modell prĂ€sentieren. Im Gegensatz zu bisherigen Erwartungen fĂŒhrt die teilweise WiedereinfĂŒhrung der Im- pulsabhĂ€ngigkeit der Selbstenergie nicht zu einer besseren Übereinstimmung von Theorie und Experiment. Das dritte Modell beschreibt Strontiumruthenat Sr2RuO4. In diesem Fall besprechen wir den Einfluss der Spin-Bahn-Kopplung auf DMFT und wie die damit verbundenen Probleme optimal gelöst werden können. Abschließend zeigen wir die ersten Ergebnisse fĂŒr dieses Modell bei niedrigen Temperaturen

    Two-particle Response Functions in Strongly Correlated Electron Systems

    Full text link
    In this thesis, we use the dynamical cluster approximation to study strongly correlated electron systems, especially from the angle of two-particle quantities, such as dynamical susceptibilities and vertex functions. The thesis starts with an introduction to the strongly correlated systems, including their definitions, prominent features, applications, difficulties in explaining them theoretically and some numerical approaches developed. The following section is an introduction to one family of strongly correlated systems we focus on in this thesis, the high temperature cuprates. The salient features in their general phase diagrams are described and discussed. Then an overview of the model we used to study high Tc cuprates is provided, with its limitations and extensions. To solve this model, the numerical method we employ for our study is the dynamical mean-field theory, the dynamical cluster approximation and the continuous time auxiliary field impurity solver. the last part of Chap.1 contains brief derivations for these algorithms. In Chap. 2, we apply dynamical cluster approximation to solve the one-band 2D Hub- bard model. The physical quantities of interest are two-particle quantitites, such as the dynamical susceptibility, irreducible vertex functions and full vertex functions. In this chapter, we describe how to obtain these susceptibilities via linear response theory and write down a detailed example for superconducting susceptibility. Finally we show how to calculate two particle quantities within DCA and obtain phase boundary with them. Chap. 3 is based on one of our publications. In this work, we specifically address the problem of optimizing the superconducting transition temperature in the 2D Hubbard model by analyzing wide regions of parameter space in density, interaction, and second- nearest-neighbor hopping strength.We mainly focus on d-wave superconductivity but show results of other symmetries in the last section. Chap. 4 follows another publication of ours. We study the temperature and doping evolution of NMR response in the normal state of the 2D Hubbard model using cluster dynamical mean-field theory. We simulate the Knight shift, the spin-echo decay rate and the spin-lattice relaxation time, and compare them to the cuprates experimental results. The last chapter extends the calculation of the NMR response to the superconducting state with the Nambu formalism. We show the detailed formulas and diagrams to calculate two-particle quantities, including the Dyson-Schwinger equation of motion.PHDPhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138575/1/xichenli_1.pd

    Implementation of the maximum entropy method for analytic continuation

    No full text
    We present Maxent, a tool for performing analytic continuation of spectral functions using the maximum entropy method. The code operates on discrete imaginary axis datasets (values with uncertainties) and transforms this input to the real axis. The code works for imaginary time and Matsubara frequency data and implements the ‘Legendre’ representation of finite temperature Green’s functions. It implements a variety of kernels, default models, and grids for continuing bosonic, fermionic, anomalous, and other data. Our implementation is licensed under GPLv3 and extensively documented. This paper shows the use of the programs in detail
    corecore