28,887 research outputs found

    Witnessing causal nonseparability

    Full text link
    Our common understanding of the physical world deeply relies on the notion that events are ordered with respect to some time parameter, with past events serving as causes for future ones. Nonetheless, it was recently found that it is possible to formulate quantum mechanics without any reference to a global time or causal structure. The resulting framework includes new kinds of quantum resources that allow performing tasks - in particular, the violation of causal inequalities - which are impossible for events ordered according to a global causal order. However, no physical implementation of such resources is known. Here we show that a recently demonstrated resource for quantum computation - the quantum switch - is a genuine example of "indefinite causal order". We do this by introducing a new tool - the causal witness - which can detect the causal nonseparability of any quantum resource that is incompatible with a definite causal order. We show however that the quantum switch does not violate any causal nequality.Comment: 15 + 12 pages, 5 figures. Published versio

    A quantum causal discovery algorithm

    Full text link
    Finding a causal model for a set of classical variables is now a well-established task---but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally-ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm provides a first step towards more general methods for quantum causal discovery.Comment: 11 pages, 10 figures, revised to match published versio

    Real-time detection of grid bulk transfer traffic

    Get PDF
    The current practice of physical science research has yielded a continuously growing demand for interconnection network bandwidth to support the sharing of large datasets. Academic research networks and internet service providers have provisioned their networks to handle this type of load, which generates prolonged, high-volume traffic between nodes on the network. Maintenance of QoS for all network users demands that the onset of these (Grid bulk) transfers be detected to enable them to be reengineered through resources specifically provisioned to handle this type of traffic. This paper describes a real-time detector that operates at full-line-rate on Gb/s links, operates at high connection rates, and can track the use of ephemeral or non-standard ports

    ExplainIt! -- A declarative root-cause analysis engine for time series data (extended version)

    Full text link
    We present ExplainIt!, a declarative, unsupervised root-cause analysis engine that uses time series monitoring data from large complex systems such as data centres. ExplainIt! empowers operators to succinctly specify a large number of causal hypotheses to search for causes of interesting events. ExplainIt! then ranks these hypotheses, reducing the number of causal dependencies from hundreds of thousands to a handful for human understanding. We show how a declarative language, such as SQL, can be effective in declaratively enumerating hypotheses that probe the structure of an unknown probabilistic graphical causal model of the underlying system. Our thesis is that databases are in a unique position to enable users to rapidly explore the possible causal mechanisms in data collected from diverse sources. We empirically demonstrate how ExplainIt! had helped us resolve over 30 performance issues in a commercial product since late 2014, of which we discuss a few cases in detail.Comment: SIGMOD Industry Track 201

    Interferometers as Probes of Planckian Quantum Geometry

    Full text link
    A theory of position of massive bodies is proposed that results in an observable quantum behavior of geometry at the Planck scale, tPt_P. Departures from classical world lines in flat spacetime are described by Planckian noncommuting operators for position in different directions, as defined by interactions with null waves. The resulting evolution of position wavefunctions in two dimensions displays a new kind of directionally-coherent quantum noise of transverse position. The amplitude of the effect in physical units is predicted with no parameters, by equating the number of degrees of freedom of position wavefunctions on a 2D spacelike surface with the entropy density of a black hole event horizon of the same area. In a region of size LL, the effect resembles spatially and directionally coherent random transverse shear deformations on timescale L/c\approx L/c with typical amplitude ctPL\approx \sqrt{ct_PL}. This quantum-geometrical "holographic noise" in position is not describable as fluctuations of a quantized metric, or as any kind of fluctuation, dispersion or propagation effect in quantum fields. In a Michelson interferometer the effect appears as noise that resembles a random Planckian walk of the beamsplitter for durations up to the light crossing time. Signal spectra and correlation functions in interferometers are derived, and predicted to be comparable with the sensitivities of current and planned experiments. It is proposed that nearly co-located Michelson interferometers of laboratory scale, cross-correlated at high frequency, can test the Planckian noise prediction with current technology.Comment: 23 pages, 6 figures, Latex. To appear in Physical Review
    corecore