
A Management Architecture for Active Networks

A. Barone, P. Chirco
Dipartimento di Ingegneria Informatica

DINFO - Universit̀a degli Studi di Palermo
viale delle Scienze, 90128 Palermo, Italy

G. Di Fatta, G. Lo Re
CERE - CEntro di studio sulle Reti di Elaboratori

C.N.R. - Consiglio Nazionale delle Ricerche
viale delle Scienze, 90128 Palermo, Italy

{difatta, lore}@cere.pa.cnr.it

Abstract

In this paper we present an architecture for network and
applications management, which is based on the Active Net-
works paradigm and shows the advantages of network pro-
grammability. The stimulus to develop this architecture
arises from an actual need to manage a cluster of active
nodes, where it is often required to redeploy network as-
sets and modify nodes connectivity. In our architecture, a
remote front-end of the managing entity allows the opera-
tor to design new network topologies, to check the status of
the nodes and to configure them. Moreover, the proposed
framework allows to explore an active network, to monitor
the active applications, to query each node and to install
programmable traps. In order to take advantage of the Ac-
tive Networks technology, we introduce active SNMP-like
MIBs and agents, which are dynamic and programmable.
The programmable management agents make tracing dis-
tributed applications a feasible task. We propose a general
framework that can interoperate with any active execution
environment. In this framework, both the manager and the
monitor front-ends communicate with an active node (the
Active Network Access Point) through the XML language.
A gateway service performs the translation of the queries
from XML to an active packet language and injects the code
in the network. We demonstrate the implementation of an
active network gateway for PLAN (Packet Language for Ac-
tive Networks) in a forty active nodes testbed. Finally, we
discuss an application of the active management architec-
ture to detect the causes of network failures by tracing net-
work events in time.

1. Introduction

Traditionally, telecommunication networks have sepa-
rated the management level from the communication level;
different infrastructures exist for the delivery of the user
data and the delivery of the information and commands ex-

changed between managing entities and managed objects.
This is not the case with computer networks and in partic-
ular with todays Internet, where management and transport
services share the communication infrastructure. In the In-
ternet management architecture there are three main com-
ponents: a managing entity, typically a centralized applica-
tion which requires human intervention, the managed de-
vices, such as network equipments and their software, and
the Simple Network Management Protocol (SNMP) [18].
SNMP is the most widely used and deployed network man-
agement framework and it has been designed to be inde-
pendent from vendor-specific products or networks. SNMP
is an inherently centralized framework. An agent program
embedded in a network device collects traffic statistics and
stores configuration values in a Management Information
Base (MIB). The managing entity can obtain the status
information or modify the configuration of the device by
polling the agent. Managing agents have a limited active
role, i.e. they can only send an asynchronous trap message
to the managing entity when few particular events occur,
such as bootstrap and link failure. In the SNMP framework
management agents are not able to manage faults locally
or to coordinate other managing agents. The high num-
ber of network nodes in an Internet administrative domain
suggests the adoption of a distributed approach to provide
scalability. Moreover, a customizable management, i.e. the
right control in the opportune place, can provide a better ef-
ficiency. Several distributed and programmable approaches
to network management, which are based on paradigms
such as Mobile Agents and Active Networks, have been
proposed. The authors in [16] propose the Smart Packets
architecture, which allows the remote execution of small
code portions inside network objects to monitor and manage
classical MIB objects. Smart Packets architecture, however,
does not allow a dynamic addition of new monitorable ob-
jects on the nodes. The authors in [10] have an analogous
goal even though they adopt the mobile agent technology
as underlying layer. Recently, the authors in [1] proposed a
general framework for the management of distributed mul-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Central Archive at the University of Reading

https://core.ac.uk/display/12666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


timedia systems. This framework adopts hierarchical orga-
nization of agents that can be dynamically instantiated by
means of customizable filters that are spread appropriately
among all the network agents. For this reason, a heavy con-
trol activity is required to coordinate management actions
for the realization of the required activities. Although Ac-
tive Networks are a promising way to adopt a programmable
agent approach in computer network management, they en-
vision a new scenario and pose new problems.

While current data networks are static and impose the
’a priori’ definition of the entities that have to be moni-
tored, Active Networks involve a dynamic evolution of the
network software. New network services and applications
can be easily deployed in the network and skip the slow
standardization process. In this case, network management
has to deal with a highly dynamic environment, without the
possibility of a previous standard definition of the moni-
torable data. Therefore, the current SNMP protocols do
not appear suitable for the new scenarios; new management
frameworks must be designed to deal with dynamic active
environments. In this paper we propose an active networks
management architecture, which adopts a distributed pro-
grammable agents strategy and a dynamic active MIB def-
inition, in order to overcome the limitation of the SNMP
framework and to enable the development and deployment
of new management services.
The remainder of the paper is structured as follows. Sec-
tion 2 shows the potential benefits of active networks in net-
work management. Section3 presents the active networks
management framework. In section4 the application and
service implementation and the basic gateway services are
illustrated, and in section5 a network event mining appli-
cation is proposed. Finally, some concluding remarks are
made in section6.

2. Potential Benefits of Active Networks in Net-
work Management

The programmability introduced by the Active Networks
may represent the leap towards a pervasive network man-
agement. The use of network services is widespread in to-
days society. The importance of services requires that they
are guaranteed by means of a continuous monitoring for im-
mediate interventions in case of fault. The concept of Re-
silience in Communications Networks has become an in-
dispensable feature of the network architecture design. Re-
silience is commonly defined as the set of mechanisms that
are able to cope with network failures. In the field of net-
work management, this is well known as proactive man-
agement. Proactive management operates on the ground
of symptoms that predict negative events in order to avoid
them.

In this scenario Active Networks may be a suitable in-

strument for the implementation of a complete management
system. The actual benefits that management applications
may obtain from the Active Networks adoption fall into the
following categories:

• availability of information held by intermediate nodes;

• data processing capability along the path;

• adoption of distributed and autonomous strategies into
the network.

The above features completely answer the network manage-
ment requirements. Mobile agents can be encapsulated and
transported in the active code of application capsules. They
can retrieve and extract pieces of information held by inter-
mediate nodes in a more effective way than through remote
queries from the application itself. For instance, an agent
could make use of an active code to look-up the MIB objects
of an intermediate node and select some entries according
to a given criterion. It can either send such extracted infor-
mation back to the application, or it can use the information
to take timely decisions autonomously from the application.
More examples can be found in other network management
issues, such as congestion control, error management, or
traffic monitoring. A meaningful example is the customiza-
tion of the routing function. A mobile agent could be de-
voted to the evaluation of the path for the application’s data
flow, according to the user’s QoS specification. Each appli-
cation could set up its own control policy or exploit a com-
mon service (the default per-hop forward function). Ac-
tive networks applications can easily implement distributed
strategies by spreading management mobile agents in the
network. The introduction of network node programmabil-
ity makes the network system one single knowledge base,
which is also capable of producing new information. This
happens, for instance, when new actions are generated de-
ductively from the resolution of previously stored data with
occurrences of particular events, thus allowing the inference
of new events and the triggering of codified measures.

3. Active Networks Management Framework

In this section we present an architecture for Active Net-
works management and monitoring. Active Networks intro-
duce programmability in the network; new software com-
ponents can be dynamically injected in the network to be
executed in intermediate nodes. Network management be-
comes even more important than in traditional networks and
it can accomplish more complex tasks. Traditional network
management framework and tools are aimed at the manage-
ment of network devices and their software, which are not
meant to change frequently. In the traditional SNMP frame-
work it would be very difficult, if not even impossible, to



Figure 1. Active Network Management Framework

trace, debug, and monitor distributed applications dynam-
ically deployed into the network. In the proposed archi-
tecture we introduce programmability features in the Man-
agement Information Base (MIB) and in the local agents to
make the management application itself distributed, coop-
erative, and adaptive. Furthermore, we point out that the
aim of an Active Networks Management framework has to
take the management of active applications into account.
Active applications management includes the deployment,
integration, and coordination of the software components to
monitor, test, poll, configure, analyze, evaluate, and con-
trol distributed network applications and their network re-
sources. In the framework (figure 1) the Managing En-
tity (ME) operates by means of a graphical user interface.
It sends queries and receives replies in Extensible Markup
Language (XML) to and from an AN Access Point. An AN
Access Point is an active node hosting a Gateway service.
A Gateway service has two tasks: the translation of XML
requests to the specific language adopted by the Execution
Environment (EE) and the injection in the network of the
appropriate active capsules that perform ME requests. This
way, the Gateway acts as an interface for a particular active
network and it is specific for the language supported by its
EE. Several nodes in the active network can be configured to
provide Gateway services. As illustrated in figure 1, a res-
ident management service, the Active Local Agent (ALA),
is installed in each active node. ME and ALA are the end
points of the management communication. Namely, the ME
can either query the Active Local Agents (polling) or deploy
subtasks to them (programmable trapping). Local agents
asynchronously perform subtasks in terms of Actions to be
executed at local Events occurrences, as we will explain in
the following. The architecture can be shared by different
AN implementations and can provide a common manage-

ment framework for different EEs. We have adopted XML
to define a set of requests/replies for basic operational tasks,
which are common to any Active Network environment.
The Gateway basic services we have currently implemented
are presented in 4.1. However, the set of Gateway services
can be gradually enlarged. Once a new service is developed
and tested, it can be provided for public use. Each basic
service requires an EE-specific code fragment stored at the
Gateway. This way, Gateway nodes provide transparent ac-
cess to different Active Networks. For instance, the ME can
use Gateway services to discover the network topology, ex-
plore the network nodes, find out which active applications
are running and monitor their activities. Furthermore, the
ME may include EE-specific code in XML requests to im-
plement customized management services. A specific tag
is provided to wrap user code in XML requests. User code
causes safety and security problems that can be managed by
means of authentication and authorization policy and limi-
tation in the programming language. We are particularly
interested in managing an Active Networks testbed where
unusual management tasks are also required, such as defin-
ing the network topology to be deployed. For this aim the
GUI provides a topology editor and the Gateway is able to
manage the configuration and bootstrap phases of EEs in
the active nodes.

3.1 Active MIB and Active Local Agent

In the design of our architecture we moved away from
the traditional SNMP framework and introduced the advan-
tages of programmability of the Active Networks paradigm.
We redefined the role of the management agent and adopted
a different model for the MIB. In the traditional SNMP
framework a managed device is a network equipment



Figure 2. Active Local Agent (ALA)

which, in general, may contain several monitorable objects,
either hardware or software (for instance network interface
cards and routing protocols). In this protocol the Managing
Entity can request the local SNMP agents basic operations
on the MIB, i.e. ’Set’ and ’Get’ the value of the objects.
Different from the SNMP scheme, in our model the ME can
program the local agents behavior to accomplish indepen-
dent tasks. Consequently, it becomes able to deploy dis-
tributed strategies. While the local SNMP agents have only
preconfigured capabilities, the Active Local Agent is pro-
grammable. A degree of programmability is also added to
the MIB objects with the adoption of the object oriented
programming paradigm. In our framework, the managed
objects are active applications, which are distributed appli-
cations whose software components run in both end nodes
and intermediate nodes of the network. An application can
subscribe the management/monitoring service in a node by
registering a unique ID to the local agent. Once registered,
it can store information into the local Active MIB (AMIB).
An AMIB object is related to a component of the managed
application in the active node. The AMIB object structure
allows applications to store data and, eventually, a related
code. Each object is not just a single variable storing a
value, but it can also contain some code represented as a set
of conditions calledfilters. In the ALA we implemented
an Events-Actions model, as shown in figure 2. AMIB Fil-
ters are< Test, Event > pairs, where the test is a Boolean
expression built over basic predicates by means of logical
operators(AND andOR). A filter test verification indi-
cates that the givenEvent has occurred. The filter test is
executed on the data when a primitiveSetdatacall occurs,
i.e. whenever the data change. If the test succeeds, the asyn-
chronous event associated with the filter is raised and sub-

mitted to the Actions Scheduler. It should be noticed that,
while the primitiveSetdata events are independent from
the application, the events produced by the filters follow
the application semantic. Further events are generated by
a synchronization process connected to the system clock.
The system clock is synchronized with a global time from a
reference time source by means of the Network Time Pro-
tocol. NTP provides accuracies typically within a millisec-
ond in LANs and up to a few tens of milliseconds on WANs
[13]. The local agent manages a list of< Event,Action >
pairs, which are the scheduled actions for the synchronous
and asynchronous events. Applications can set actions to
be executed by the ALA in correspondence to given events.
Incoming active capsules can access the data and code in
the AMIB and in the Action list through the services pro-
vided by the Agent Interface and Policy Enforcement mod-
ule (Set/Get data, filters, actions). In general, actions are in
the form of active capsules, which are released to perform
the required task. For instance, as a consequence of a queue
overflow event, a report trap can be simply sent back to the
ME through a capsule containing the warning message, or a
proactive action could be taken by means of a more complex
code in the capsule. In general, AMIB filters can be injected
by either the application itself (the data owner) or by a dif-
ferent application, e.g. the managing entity. In order to limit
the effects of malicious or malfunctioning codes, filters can-
not access network primitives nor make recursive calls and
Actions cannot trigger local Events. The restriction on fil-
ters and actions can be tuned by a proper security policy
based on authentication and authorization. In a public net-
work infrastructure a security policy in the management of
AMIB Data, filters and actions has to be enforced by the
ALA. However, this is beyond the scope of this paper. The



management framework is now considered active because,
first, the MIBs contain both data and code, and secondly,
each local management agent (ALA) plays an active role
in the network management by independently performing
programmed tasks.

4. Application and Service Implementation

The framework described in this paper originates from a
practical need of managing an active network. We have re-
alized an experimental testbed of forty active nodes with
the aim to investigate the novel paradigm of active net-
working. The testbed is currently used for the develop-
ment and testing of innovative protocols and applications:
[3], [8], [6], [7]. The experimental laboratory is constituted
by a fully connected network of active nodes, which al-
lows us to clip specific topologies according to the research
needs. Each node is implemented by a Linux workstation
equipped with four 100 Mbps Ethernet network cards to
emulate a four ports active router. The active nodes are
equipped with the main software packages for active net-
working such as PLAN [12], ANTS [22], ASP [14]. The
management framework described in the previous section
allows monitoring and management of the network services
and applications. Moreover, the management framework
assumes a relevant role in the development phase of net-
work applications. A network application is fully respon-
sible for selecting its own internal data that may be ob-
served by other applications (e.g. the ME). The application
can decide which data in the active MIB can be monitored.
Variable monitoring is very useful during the debugging ac-
tivity. Furthermore, the active MIBs allow the realization
of a communication system between network applications
when AMIB objects are used as shared memory variables.
Inter-applications communication makes new network ser-
vices possible: applications can take advantage from data
collected by other applications. Several simple functional-
ities of the active network Gateway have been developed
and tested as active services in the PLAN execution envi-
ronment (see 4.1). For instance, we developed a service,
calledDelivery MST , in order to optimally visit all the
nodes of the network. Given a task, the service delivers
and executes the task in each node. The service builds a
temporary minimum spanning tree along which the results
will be progressively merged and finally delivered to the
source. The service is optimal in the bandwidth consump-
tion and it avoids messages implosion at the source. Nav-
igation patterns are strategies to move from node to node
in the network as part of program execution. Simple nav-
igation patterns are described in [9]; theDelivery MST
service can be considered an advanced navigation pattern.
Furthermore, synchronous events allow an easy and simple
implementation of a ’snapshot’ service. By means of this

service it is possible to capture all the values assumed by
the investigated AMIB in a precise temporal instant, in all
the network nodes. Other services we implemented include
topology discovery, monitoring the path of active packets,
monitoring the routing tables, etc.. External applications
can use the basic Gateway Services to obtain information
on the active services available at a node and finding fault
situations.

4.1 Basic Gateway Services

An active network can have many Access Points which
provide the Gateway services. From any Access Point it
is possible to query active nodes. Gateway services are
relative to either the network or application levels, and fall
into two categories: public and administrative services.
The public services do not modify the active network
configuration and their multiple and concurrent executions
are allowed. On the contrary, in order to avoid conflicts,
a mutual exclusion technique is adopted to guarantee
that only one administrator has been authenticated and is
executing administrative operations. In the following we
briefly present the services we have implemented in our
testbed within the PLAN EE.

Active Network Level − Public Services
Get Topology
This service retrieves the topology of the current active
network and information on the status of active nodes.
Ping
This service uses the UNIX ping command to test if a node
is reachable at the network layer.
Active Ping
This active version of the ping command uses active
messages to test if a node is reachable at the active network
layer, i.e. at the Execution Environment layer.
Get Routing Table
This service provides the routing table of an active node.

Active Network Level −Administrative Services
Set Topology
In experimental test-bed this service defines the topology
of the active network. It generates and deploys the configu-
ration required for each active node.
Bootstrap AN
This service spawns the EE processes in all active nodes.
The service is available only if a topology configuration
has been deployed by the SetTopology service.
Shutdown AN
This service stops the EE processes of all the active nodes.
Set Static Route
This service sets a static route between a source and a
destination.



Delivery Path
This service generates an active capsule, which visits the
active node of a given source-destination path to execute a
given task. The task is a code fragment, which is provided
by the user in the language supported by the EE.
Delivery Path&Return
As Delivery Path, but in this case the path is traversed in
the two directions, forwards and backwards. Each node
is visited twice. In the backwards path results will be
progressively merged and finally delivered to the source of
the request.
Delivery MST
This service generates an active capsule, which optimally
visits the active network to execute a given task in each
active node. The service builds a temporary minimum
spanning tree along which the results will be progressively
merged and finally delivered to the source of the request.
Delivery Tree
As Delivery MST, but in this case the nodes to be visited
are a subset of the network nodes.

Active Application Level − Public Services
Get Applications List
This service retrieves the list of the active applications
which have stored data in the AMIB of a given active node.
Get Data List
This service retrieves the list of the AMIB object IDs of a
given application in an active node.
Get Value
This service retrieves the current value of a particular
AMIB data of a given application in an active node.
Get Filters List
This service retrieves the active filters associated to a
particular AMIB data of a given application in an active
node.
Get Events List
This service retrieves the Events of a given application in
an active node. Application Events are defined in filters and
actions.
Get Actions List
This service retrieves the Actions list of a given application
in an active node.
Get Action Code
This service retrieves the Action code fragment of a given
application in an active node.

Active Application Level −Administrative Services
Set Value
This service sets the value of a particular AMIB object of a
given application in an active node.
Set Filters
This service modifies the active filters associated to a
particular AMIB data of a given application in an active

node. Setting an empty list of filters is used in order to
remove filters.
Set/RemoveAction
This service modifies the active actions of a given applica-
tion in an active node.

It should be noticed that an active application can al-
ways set and remove its own data, filters and actions
through the ALA services of an active node. This process
does not involve the above Gateway services, which are
provided to managing/monitoring entities. Finally, the
XML message prototypes of the request and response of
the ’GetTopology’ service are given as example.

< request command = “get topology” >
< /request >

< response command = “get topology” >
< status >< /status >
< net nodenum = “ ”maxdegree = “ ” >

< node name = “ ”degree = “ ” >
< coord x = “ ”y = “ ” >< /coord >
< adjac name = “ ”cost = “ ” >< /adiac >
< addr >< /addr >
< port >< /port >

< /node >
< /net >

< /response >

In the next section we discuss an application of the active
management architecture to detect the causes of network
failures by tracing in time network events.

5. Network Events Mining

An application, which can take advantage of the archi-
tecture proposed in this paper, is related to the knowledge
management of network events. For different management
aims, it is often necessary to acquire information from the
’log’ files of many network devices. However, it may result
extremely expensive to store all the events that occur in all
the network devices in a long period of time. It would be
more efficient to be able to distinguish which events must
be stored and which do not add further knowledge to the
network history. Network Events Mining (NEM) deals with
large archives of events obtained from the network systems,
and extracts useful information from these data. Goals of
NEM systems are:

• to diagnose root causes of network faults and perfor-
mance degradations by establishing relationships be-
tween network events;



• to filter event (alarm) flood by correlating several
events into a single conceptual event.

Useful NEM systems should provide:

• correctness: the root causes inferred by NEM should
be entailed by the detected events with a high likeli-
hood, i.e. the root causes have really occurred in the
network;

• optimality: the NEM should infer as small a set of root
causes that can explain all the detected events.

A Managing Entity with NEM functionalities can adopt
a dynamic model of the network and a logic engine to gen-
erate a distributed knowledge base, where only the essen-
tial information to describe the system history is stored.
The word ’history’ here refers to a limited period in the
past, of which the beginning is continuously advanced with
the flowing of the current time. The knowledge of net-
work events constitutes the necessary information to answer
questions about the causes of network failures. Fault man-
agement is based on the definition of the normal operating
conditions, and on the abnormalities detection. In general,
alarms are generated in the network when abnormalities are
detected. In alarm-based fault detection systems, a single
fault will often cause a large number of alarms. More-
over, several faults may coexist causing a cascade of alarms.
NEM is able to correlate alarms to pinpoint their root causes
in order to efficiently handle them.

Currently, we are developing a management entity ME,
which is able to trace the real causes of network failures
back. The ME engine is based on the situation calculus and
specifically on the Golog language [15]. Situation Calculus
is a dialect of the first order logic and it allows the mod-
eling of dynamic systems. This calculus captures the dy-
namism of a system, since it allows the definition of actions
that move the system from a given state to another one. All
changes to the world are the results of named actions. A
possible world history is simply a sequence of actions, and
it is represented by a first order term, called a ’situation’.
While the Situation Calculus allows the representation of
simple actions, Golog is a novel logic programming lan-
guage, which allows the modeling of complex behaviors.
Particular attention must be paid to the ontological aspects
of the knowledge base. An effective structured representa-
tion of the network events and actions can greatly improve
the logical deductive process. This Managing Entity tries
to resolve the occurrence of a given event within its knowl-
edge base and, when possible, deduces a conclusion. If no
conclusion is deducible from the current knowledge base,
the ME is able to trigger further investigations with the aim
to acquire new information, until the uncertainty is solved.
New information is inserted in the knowledge base only if
it is not effectively deducible. In terms of the first order

logic this means that it is not a logical consequence of the
asserted facts. This way, the knowledge base is kept in its
minimal form. Moreover, the situation calculus is suitable
for the coding of proactive behaviors of the ME. In a logic
programming language, it results easy to implement rules
to recognize situations that are prologue of incipient prob-
lems, e.g. failures of the network or hacker attacks, and
to codify the opportune contra measures. Both the capa-
bilities of obtaining new information and of implementing
recovery and safety policies rely on the programmability in-
troduced by active networks. The programmability of the
active nodes allows the customization of particular tasks to
investigate unknown aspects of the network history, to per-
form proactive actions which avoid failures, and to resist to
attacks. For the sake of simplicity we defined an event as
an instantaneous occurrence at a time point. The time is as-
sumed to be discretized. Each event is associated with the
AMIB object where it occurs. AMIB Objects can be seen
as tuples of attributes, and the events as a change in the
attribute state. Events can be classified as primitive or com-
posite. Primitive events are generated at the change of the
object attributes, while composite events are non directly
observable. For instance, a router failure can be inferred
from a persistent connection failure. We consider two forms
of event correlations as in [11]: the causal and the tempo-
ral correlations. The causal correlation expresses the rela-
tionship of causality, i.e. a cause-effect dependence. For
instance, this kind of correlation can be adopted to estab-
lish the root causes of faults. The causal correlation can
be easily expressed as a first order logic theory in which
are assiomatized simple properties such as the reflexivity,
transitivity and union. Furthermore, we can establish even
stronger correlations between events based on their tempo-
ral occurrences. Some examples are relationships such as:
e1 followed by e2, first e1 since the recent e2. In [11]
it is shown that the temporal correlation is more powerful
than the causal one. The causal events correlation does not
allow to cover all the possible events relationships, and the
temporal correlation is necessary to express the dependency
from persistent events. Current efforts are aimed to draw
event correlations in order to infer composite events from
the knowledge of previous events (either primitive or com-
posite) for different management aims.

6. Summary and Conclusions

This paper presents an active network management
framework which exploits network programmability to en-
able agents based distributed strategies. The proposed ar-
chitecture is capable of managing both the active network
Execution Environments and the Active Applications run-
ning on them. Its main feature consist in the extension of
the classical MIB objects into more powerful entities where



user customizable code is associated to network data. The
Filters − Events − Actions framework improves man-
agement efficiency and enables new management services.
Finally, a network events mining strategy is proposed to ex-
tract only the useful information from the network data for
different management aims.

References

[1] Al Shaer E., ”Active Management Framework for Dis-
tributed Multimedia Systems”, Journal of Networks
and Systems Management, vol. 8 n. 1, 2000, pp.49-
72.

[2] Bhattacharjee, S., Calvert, K.L., Zegura, E.W.: ”Ac-
tive Networking and End-to-End Arguments”, IEEE
Network Special Issue on Active and Controllable
Networks, vol. 12, n. 3, May-June 1998

[3] A. Chella, G. Di Fatta, G. Favarò, M.D. Guarino, G.
Lo Re, ”A Reconfigurable Neural Environment on Ac-
tive Networks”, Proc. of IEEE IJCNN2000, Como,
Italy, July 2000

[4] Chen, T. M., ”Evolution to the Programmable Inter-
net”, IEEE Communications Magazine, vol.38, n. 3,
March 2000.

[5] L. Delgrossi, G. Di Fatta, D. Ferrari, G. Lo Re, ”In-
terference and Communications among Active Net-
work Applications”, Lecture Notes in Computer Sci-
ence vol. 1653, Springer-Verlag, pagg. 97-108, Proc.
of IWAN’99, Berlin, Germany, 30 June - 2 July 1999.

[6] Di Fatta G., Gaglio S., Lo Re G., Ortolani M., ”Adap-
tive Routing in Active Networks”, IEEE Openarch
2000, Tel Aviv Israel 23-24 March 2000.

[7] G. Di Fatta, G. Lo Re, ”Active Networks: an Evolu-
tion of the Internet”, Proc. of AICA2001 - 39th An-
nual Conference, Cernobbio, Italy, 19-22 Sept. 2001.

[8] G. Di Fatta, S. Gaglio, G. Lo Re, M. Ortolani,” Arti-
ficial Ants for Active Routing”, IAS6, the 6th Inter-
national Conference on Intelligent Autonomous Sys-
tems. Venice,July 2000.

[9] Kawamura R., Stadler R., ”Active Distributed Man-
agement for IP Networks”, IEEE Communicatiions
Magazine, vol. 38, N 4. April 2000, pp. 114-121.

[10] Goldszmidt G., Yemini Y, ”Delegated Agents for Net-
work Management”, IEEE Communicatiions Maga-
zine, vol. 36, N. 3 March 1998, pp. 66-71.

[11] Hasan, M., Sugla, B., Viswanathan, R.: A Conceptual
Framework for Network Management Event Correla-
tion and Filtering Systems. Proc. of Sixth IFIP/IEEE
International Symposyum on Integrated Management,
May 1999

[12] Hick, M., et al, ”PLAN: A Packet Language for Active
Networks”, Proc. of 3rd ACM SIGPLAN International
Conference on Functional Programming, pages 86-93.
ACM, September 1998.

[13] Mills D. L., ”On the accuracy of Clocks Synchronized
by the Network Time Protocol in the Internet System”,
ACM Computer Communication Review, vol. 20, no.
1, pp. 65-75, Jan. 1990.

[14] G. Phillips, B. Braden, J. Kann, and B. Lindell. ”Writ-
ing an Active Application for the ASP Execution En-
vironment” (Release 1.3)

[15] Reiter Raymond, ”Knowledge in action: Logical
Foundations for specifying and implementing Dy-
namical Systems” The MIT Press Cambridge Mas-
sachusetts 2001

[16] Schwartz B. Y., et al, ”Smart Packets: applying Ac-
tive Networks to Network Management”, ACM Trans-
action on computer Systems, Vol. 18, N. 1, February
2000, pp 67-88.

[17] Smith, J. M., Calvert, K.L., Murphy, S. L., Orman, H.
K., Peterson, L.L.: Activating Networks: A Progress
Report”. IEEE Computer, Vol. 32 N. 4, April 1999, 32
- 41

[18] Stallings W., ”SNMP and SNMPv2: The Infrastruc-
ture for Network Management”, IEEE Communicati-
ions Magazine, vol. 36, N. 3 March 1998, pp. 37-45.

[19] Tennenhouse, D. L., Smith, J.M., Sincoskie, W.D.,
Wetherall D.J., Minde, G.J.: ”A Survey of Active Net-
work Research”, IEEE Communications Magazine,
Vol. 35, No. 1, January 1997, 8

[20] Tennenhouse, D. L., Wetherall, D.J.: ”Towards an Ac-
tive Network Architecture”, Computer Communica-
tion Review, Vol. 26, No. 2, April 1996

[21] Wetherall, D.J., Legedza, U., Guttag, J.: ”Introduc-
ing New Internet Services: Why and How”, IEEE
Network Magazine Special Issue on Active and Pro-
grammable Networks, vol. 12, n.3, May-June 1998

[22] Wetherall, D.J., Guttag, J., Tennenhouse, D.L.:
”ANTS: A Toolkit for Building and Dynamically De-
ploying Network Protocols”, IEEE OPENARCH’98,
San Francisco, CA, April 1998


