1,577 research outputs found

    Analysis of Parallel Montgomery Multiplication in CUDA

    Get PDF
    For a given level of security, elliptic curve cryptography (ECC) offers improved efficiency over classic public key implementations. Point multiplication is the most common operation in ECC and, consequently, any significant improvement in perfor- mance will likely require accelerating point multiplication. In ECC, the Montgomery algorithm is widely used for point multiplication. The primary purpose of this project is to implement and analyze a parallel implementation of the Montgomery algorithm as it is used in ECC. Specifically, the performance of CPU-based Montgomery multiplication and a GPU-based implementation in CUDA are compared

    Point compression for the trace zero subgroup over a small degree extension field

    Get PDF
    Using Semaev's summation polynomials, we derive a new equation for the Fq\mathbb{F}_q-rational points of the trace zero variety of an elliptic curve defined over Fq\mathbb{F}_q. Using this equation, we produce an optimal-size representation for such points. Our representation is compatible with scalar multiplication. We give a point compression algorithm to compute the representation and a decompression algorithm to recover the original point (up to some small ambiguity). The algorithms are efficient for trace zero varieties coming from small degree extension fields. We give explicit equations and discuss in detail the practically relevant cases of cubic and quintic field extensions.Comment: 23 pages, to appear in Designs, Codes and Cryptograph

    Computing cardinalities of Q-curve reductions over finite fields

    Get PDF
    We present a specialized point-counting algorithm for a class of elliptic curves over F\_{p^2} that includes reductions of quadratic Q-curves modulo inert primes and, more generally, any elliptic curve over F\_{p^2} with a low-degree isogeny to its Galois conjugate curve. These curves have interesting cryptographic applications. Our algorithm is a variant of the Schoof--Elkies--Atkin (SEA) algorithm, but with a new, lower-degree endomorphism in place of Frobenius. While it has the same asymptotic asymptotic complexity as SEA, our algorithm is much faster in practice.Comment: To appear in the proceedings of ANTS-XII. Added acknowledgement of Drew Sutherlan

    Computer Architectures for Cryptosystems Based on Hyperelliptic Curves

    Get PDF
    Security issues play an important role in almost all modern communication and computer networks. As Internet applications continue to grow dramatically, security requirements have to be strengthened. Hyperelliptic curve cryptosystems (HECC) allow for shorter operands at the same level of security than other public-key cryptosystems, such as RSA or Diffie-Hellman. These shorter operands appear promising for many applications. Hyperelliptic curves are a generalization of elliptic curves and they can also be used for building discrete logarithm public-key schemes. A major part of this work is the development of computer architectures for the different algorithms needed for HECC. The architectures are developed for a reconfigurable platform based on Field Programmable Gate Arrays (FPGAs). FPGAs combine the flexibility of software solutions with the security of traditional hardware implementations. In particular, it is possible to easily change all algorithm parameters such as curve coefficients and underlying finite field. In this work we first summarized the theoretical background of hyperelliptic curve cryptosystems. In order to realize the operation addition and doubling on the Jacobian, we developed architectures for the composition and reduction step. These in turn are based on architectures for arithmetic in the underlying field and for arithmetic in the polynomial ring. The architectures are described in VHDL (VHSIC Hardware Description Language) and the code was functionally verified. Some of the arithmetic modules were also synthesized. We provide estimates for the clock cycle count for a group operation in the Jacobian. The system targeted was HECC of genus four over GF(2^41)

    Fast algorithms for computing isogenies between ordinary elliptic curves in small characteristic

    Get PDF
    The problem of computing an explicit isogeny between two given elliptic curves over F_q, originally motivated by point counting, has recently awaken new interest in the cryptology community thanks to the works of Teske and Rostovstev & Stolbunov. While the large characteristic case is well understood, only suboptimal algorithms are known in small characteristic; they are due to Couveignes, Lercier, Lercier & Joux and Lercier & Sirvent. In this paper we discuss the differences between them and run some comparative experiments. We also present the first complete implementation of Couveignes' second algorithm and present improvements that make it the algorithm having the best asymptotic complexity in the degree of the isogeny.Comment: 21 pages, 6 figures, 1 table. Submitted to J. Number Theor

    On the distribution of Atkin and Elkies primes for reductions of elliptic curves on average

    Full text link
    For an elliptic curve E/Q without complex multiplication we study the distribution of Atkin and Elkies primes l, on average, over all good reductions of E modulo primes p. We show that, under the Generalised Riemann Hypothesis, for almost all primes p there are enough small Elkies primes l to ensure that the Schoof-Elkies-Atkin point-counting algorithm runs in (log p)^(4+o(1)) expected time.Comment: 20 pages, to appear in LMS J. Comput. Mat
    • …
    corecore