1,482 research outputs found

    Parallelizing Deadlock Resolution in Symbolic Synthesis of Distributed Programs

    Full text link
    Previous work has shown that there are two major complexity barriers in the synthesis of fault-tolerant distributed programs: (1) generation of fault-span, the set of states reachable in the presence of faults, and (2) resolving deadlock states, from where the program has no outgoing transitions. Of these, the former closely resembles with model checking and, hence, techniques for efficient verification are directly applicable to it. Hence, we focus on expediting the latter with the use of multi-core technology. We present two approaches for parallelization by considering different design choices. The first approach is based on the computation of equivalence classes of program transitions (called group computation) that are needed due to the issue of distribution (i.e., inability of processes to atomically read and write all program variables). We show that in most cases the speedup of this approach is close to the ideal speedup and in some cases it is superlinear. The second approach uses traditional technique of partitioning deadlock states among multiple threads. However, our experiments show that the speedup for this approach is small. Consequently, our analysis demonstrates that a simple approach of parallelizing the group computation is likely to be the effective method for using multi-core computing in the context of deadlock resolution

    Symbolic Implementation of Connectors in BIP

    Full text link
    BIP is a component framework for constructing systems by superposing three layers of modeling: Behavior, Interaction, and Priority. Behavior is represented by labeled transition systems communicating through ports. Interactions are sets of ports. A synchronization between components is possible through the interactions specified by a set of connectors. When several interactions are possible, priorities allow to restrict the non-determinism by choosing an interaction, which is maximal according to some given strict partial order. The BIP component framework has been implemented in a language and a tool-set. The execution of a BIP program is driven by a dedicated engine, which has access to the set of connectors and priority model of the program. A key performance issue is the computation of the set of possible interactions of the BIP program from a given state. Currently, the choice of the interaction to be executed involves a costly exploration of enumerative representations for connectors. This leads to a considerable overhead in execution times. In this paper, we propose a symbolic implementation of the execution model of BIP, which drastically reduces this overhead. The symbolic implementation is based on computing boolean representation for components, connectors, and priorities with an existing BDD package

    Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Full text link
    State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1) parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2) symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal

    Chain Reduction for Binary and Zero-Suppressed Decision Diagrams

    Full text link
    Chain reduction enables reduced ordered binary decision diagrams (BDDs) and zero-suppressed binary decision diagrams (ZDDs) to each take advantage of the others' ability to symbolically represent Boolean functions in compact form. For any Boolean function, its chain-reduced ZDD (CZDD) representation will be no larger than its ZDD representation, and at most twice the size of its BDD representation. The chain-reduced BDD (CBDD) of a function will be no larger than its BDD representation, and at most three times the size of its CZDD representation. Extensions to the standard algorithms for operating on BDDs and ZDDs enable them to operate on the chain-reduced versions. Experimental evaluations on representative benchmarks for encoding word lists, solving combinatorial problems, and operating on digital circuits indicate that chain reduction can provide significant benefits in terms of both memory and execution time

    Sigref ā€“ A Symbolic Bisimulation Tool Box

    Get PDF
    We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally correspond to efficient BDD operations. Thus, the definition of an appropriate signature is the key for a rapid development of algorithms for other types of bisimulation. We provide experimental evidence of the viability of this approach by presenting computational results for many bisimulations on real-world instances. The experiments show cases where our framework can handle state spaces efficiently that are far too large to handle for any tool that requires an explicit state space description. This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center ā€œAutomatic Verification and Analysis of Complex Systemsā€ (SFB/TR 14 AVACS). See www.avacs.org for more information

    Verified AIG Algorithms in ACL2

    Full text link
    And-Inverter Graphs (AIGs) are a popular way to represent Boolean functions (like circuits). AIG simplification algorithms can dramatically reduce an AIG, and play an important role in modern hardware verification tools like equivalence checkers. In practice, these tricky algorithms are implemented with optimized C or C++ routines with no guarantee of correctness. Meanwhile, many interactive theorem provers can now employ SAT or SMT solvers to automatically solve finite goals, but no theorem prover makes use of these advanced, AIG-based approaches. We have developed two ways to represent AIGs within the ACL2 theorem prover. One representation, Hons-AIGs, is especially convenient to use and reason about. The other, Aignet, is the opposite; it is styled after modern AIG packages and allows for efficient algorithms. We have implemented functions for converting between these representations, random vector simulation, conversion to CNF, etc., and developed reasoning strategies for verifying these algorithms. Aside from these contributions towards verifying AIG algorithms, this work has an immediate, practical benefit for ACL2 users who are using GL to bit-blast finite ACL2 theorems: they can now optionally trust an off-the-shelf SAT solver to carry out the proof, instead of using the built-in BDD package. Looking to the future, it is a first step toward implementing verified AIG simplification algorithms that might further improve GL performance.Comment: In Proceedings ACL2 2013, arXiv:1304.712

    Gate-Level Simulation of Quantum Circuits

    Get PDF
    While thousands of experimental physicists and chemists are currently trying to build scalable quantum computers, it appears that simulation of quantum computation will be at least as critical as circuit simulation in classical VLSI design. However, since the work of Richard Feynman in the early 1980s little progress was made in practical quantum simulation. Most researchers focused on polynomial-time simulation of restricted types of quantum circuits that fall short of the full power of quantum computation. Simulating quantum computing devices and useful quantum algorithms on classical hardware now requires excessive computational resources, making many important simulation tasks infeasible. In this work we propose a new technique for gate-level simulation of quantum circuits which greatly reduces the difficulty and cost of such simulations. The proposed technique is implemented in a simulation tool called the Quantum Information Decision Diagram (QuIDD) and evaluated by simulating Grover's quantum search algorithm. The back-end of our package, QuIDD Pro, is based on Binary Decision Diagrams, well-known for their ability to efficiently represent many seemingly intractable combinatorial structures. This reliance on a well-established area of research allows us to take advantage of existing software for BDD manipulation and achieve unparalleled empirical results for quantum simulation

    Multi-core Decision Diagrams

    Get PDF
    Decision diagrams are fundamental data structures that revolutionized fields such as model checking, automated reasoning and decision processes. As performance gains in the current era mostly come from parallel processing, an ongoing challenge is to develop data structures and algorithms for modern multicore architectures. This chapter describes the parallelization of decision diagram operations as implemented in the parallel decision diagram package Sylvan, which allows sequential algorithms that use decision diagrams to exploit the power of multi-core machines
    • ā€¦
    corecore