
Chapter 13

Multi-core Decision Diagrams

Tom van Dijk and Jaco van de Pol

Abstract Decision diagrams are fundamental data structures that revolutionized
fields such as model checking, automated reasoning and decision processes. As
performance gains in the current era mostly come from parallel processing, an
ongoing challenge is to develop data structures and algorithms for modern multi-
core architectures. This chapter describes the parallelization of decision diagram
operations as implemented in the parallel decision diagram package Sylvan, which
allows sequential algorithms that use decision diagrams to exploit the power of
multi-core machines.

13.1 Introduction

Decision diagrams are fundamental data structures in computer science and find appli-
cations in many areas. They are extensively used in symbolic model checking [15, 16],
logic synthesis [40, 41, 55], Boolean satisfiability, fault tree analysis [52, 12], test
generation [6, 1] and even to represent access control lists [26]. A recent survey
paper by Minato [44] provides an accessible history of research into decision dia-
grams, listing applications to data mining [38], Bayesian networks and probabilistic
inference models [45, 32], and game theory [53].

In the past, the processing power of computers increased mostly by improvements
in the clock speed and the efficiency of processors, which often do not require
adaptations to algorithms. However, as physical constraints seem to limit such
improvements, further increases in processing power of modern machines inevitably

Tom van Dijk
Institute for Formal Methods and Verification, Johannes Kepler University, Linz, Austria
e-mail: tom.vandijk@jku.at

Jaco van de Pol
Formal Methods and Tools, University of Twente, Enschede, The Netherlands
e-mail: j.c.vandepol@utwente.nl

509© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_13

tom.vandijk@jku.at
j.c.vandepol@utwente.nl
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_13&domain=pdf

510 Tom van Dijk and Jaco van de Pol

come from using multiple cores. To make optimal use of the processing power of
multi-core machines, algorithms must be adapted.

This chapter discusses the techniques that we used to parallelize decision diagram
algorithms in the parallel decision diagram library Sylvan [61, 64, 59]. These tech-
niques are based on two main ingredients. The first ingredient is work-stealing to
perform task-based algorithms such as decision diagram operations in parallel. The
second ingredient consists of two concurrent data structures: a single shared hash
table that stores all nodes of the decision diagrams, and a single concurrent operation
cache that stores the intermediate results of operations for reuse.

This chapter is largely based on the research related to the parallel decision
diagram library Sylvan, which is described in [66] and in the PhD thesis of Van
Dijk [59]. Sylvan implements parallelized operations on binary decision diagrams
(BDDs), list decision diagrams (LDDs), which are used in the model checking toolset
LTSMIN [33], and multi-terminal binary decision diagrams (MTBDDs) [5, 22].
Sylvan can replace existing non-parallel implementations to bring the processing
power of multi-core machines to non-parallel applications.

The remainder of this chapter is organized in the following way:

Section 13.2 gives a high-level overview of decision diagrams and decision diagram
operations.

Section 13.3 discusses how decision diagram operations can be parallelized using
work-stealing.

Section 13.4 discusses the main concurrent data structures: the hash table that con-
tains the nodes of the decision diagrams, and the operation cache that stores the
intermediate results of the operations.

Section 13.5 presents parallel garbage collection.

Section 13.6 briefly reviews the performance of parallel decision diagram operations
for a number of applications. We discuss previously reported case studies on using
decision diagrams in model checking, bisimulation reduction and probabilistic model
checking.

Section 13.7 finally concludes the chapter.

13.2 Preliminaries

This section gives a high-level overview of decision diagrams and decision diagram
operations. We discuss Boolean logic and the most well-known form of decision
diagrams, binary decision diagrams, in Sections 13.2.1 and 13.2.2, as well as one pop-
ular extension of binary decision diagrams with non-binary leaves in Section 13.2.3.
Section 13.2.4 describes how typical decision diagram operations are implemented.
Section 13.2.5 discusses lock-free programming. Finally, Section 13.2.6 aims to
provide the reader with an overview of parallelized decision diagram operations in
earlier literature.

13 Multi-core Decision Diagrams 511

13.2.1 Boolean Logic and Notation

Boolean logic is fundamental in computer science, especially as all digital data can
be expressed in binary form. Boolean variables are either true or false. Boolean
formulas are defined on Boolean variables and have operators such as conjunction
(x ∧ y), disjunction (x ∨ y), negation (¬x) and quantification (∃ and ∀). Boolean
functions are functions BN → B (on N inputs), with a Boolean formula representing
the relation between the inputs and the output of the Boolean function.

In this chapter, we also use 0 to denote false and 1 to denote true. We use
the notation fx=v for a Boolean function f where the variable x is given value v. For
example, given a function f defined on N variables:

f (x1, . . . ,xi, . . . ,xN)xi=0 ≡ f (x1, . . . ,0, . . . ,xN)

f (x1, . . . ,xi, . . . ,xN)xi=1 ≡ f (x1, . . . ,1, . . . ,xN)

This notation is especially relevant for decision diagrams, as they are recursively
defined on the value of a Boolean variable.

13.2.2 Binary Decision Diagrams

Binary decision diagrams (BDDs) are a concise and canonical representation of
Boolean functions BN → B [3, 14] and are a basic structure in discrete mathematics
and computer science.

A (reduced, ordered) BDD is a rooted directed acyclic graph with leaves 0 and
1. Each internal node has a variable label xi and two outgoing edges labeled 0
and 1, called the “low” and the “high” edge. Variables are encountered along each
directed path according to a fixed variable ordering. Equivalent nodes (two nodes
with the same label and outgoing edges) and nodes with two identical outgoing edges
(redundant nodes) are forbidden. It is well known that, given a fixed ordering, every
Boolean function is represented by a unique BDD [14].

The following figure shows the BDDs for several Boolean functions. Internal
nodes are drawn as circles with variables, and leaves as boxes. High edges are drawn
solid, and low edges are drawn dashed. Given a valuation of the variables, BDDs are
evaluated by following the high edge when the variable x is true, or the low edge
when it is false.

512 Tom van Dijk and Jaco van de Pol

x x1∧ x2 x1∨ x2 x1⊕ x2

x

1 0

x1

x2

1 0

x1

x2

1 0

x1

x2

1

x2

0

There are various equivalent ways to interpret a binary decision diagram, leading to
the same Boolean function:

1. Consider every distinct path from the root of the BDD to the terminal 1. Every
such path assigns true or false to the variables encountered along that path,
by following either the high edge or the low edge. In this way, every path
corresponds to a conjunction of literals, sometimes called a cube. For example,
the cube x0x1x3x4x5 corresponds to a path that follows the high edges of nodes
labeled x0, x3 and x4, and the low edges of nodes labeled x1 and x5. If the cubes
c1, . . . ,ck correspond to the k distinct paths in a BDD, then this BDD encodes
the function c1∨·· ·∨ ck.

2. Alternatively, after computing fx=1 and fx=0 by interpreting the BDDs obtained
by following the high and the low edges, a BDD node with variable label x
represents the Boolean function x fx=1∨ x fx=0.

In addition, we use complemented edges [13] as a property of an edge to denote
the negation of a BDD, i.e., the leaf 1 in the BDD will be interpreted as 0 and vice
versa, or in general, each terminal node will be interpreted as its negation. This is a
well-known technique. We write ¬ to denote toggling this property on an edge. The
following figure shows the BDDs for the same simple examples as above, but with
complemented edges:

x x1∧ x2 x1∨ x2 x1⊕ x2

0

x

0

x2

x1

0

x2

x1

0

x2

x1

As this example demonstrates, always strictly fewer nodes are required, and there
is only one (“false”) terminal node. The terminal “true” is simply a complemented

13 Multi-core Decision Diagrams 513

edge to “false”. We only allow complement marks on the high edges to maintain the
property that BDDs uniquely represent Boolean functions (see also below).

The interpretation of a BDD with complemented edges is as follows:

1. Count the complemented edges on each path to the terminal 0. Since negation is
an involution (¬¬x = x), each path with an odd number of complemented edges
is a path to “true”, and with cubes c1, . . . ,ck corresponding to all such paths, the
BDD encodes the Boolean function c1∨·· ·∨ ck.

2. If the high edge has a complement mark, then the BDD node represents the
Boolean function x¬ fx=1∨ x fx=0, otherwise x fx=1∨ x fx=0.

With complemented edges, the following BDDs are identical:

xi xi

Complemented edges thus introduce a second representation of a Boolean func-
tion: if we toggle the complement mark on the two outgoing edges and on all
incoming edges, we find that it encodes the same Boolean function. By forbidding a
complement on one of the outgoing edges, for example the low edge, BDDs remain
canonical representations of Boolean functions, since then the representation without
a complement mark on the low edge is always used [13].

13.2.3 Multi-terminal Binary Decision Diagrams

In addition to BDDs with leaves 0 and 1, multi-terminal binary decision diagrams
(MTBDDs) have been proposed [5, 22] with arbitrary leaves, representing functions
from the Boolean space BN into any set. For example, MTBDDs can have leaves
representing integers (encodingBN →N), floating-point numbers (encodingBN →R)
or rational numbers (encoding BN →Q). In our implementation of MTBDDs, we
also allow for partially defined functions, using a leaf⊥. See Figure 13.1 for a simple
example of such an MTBDD.

Similar to the interpretation of BDDs, MTBDDs are interpreted as follows:

1. An MTBDD encodes functions from a Boolean domain D ⊆ BN onto some
codomain C, such that for each path to a leaf V ∈ C, all inputs matching the
corresponding cube c map to V . Also, given all such cubes c1, . . . ,ck, the domain
D equals c1∨·· ·∨ ck. All paths corresponding to cubes not in D, i.e., for which
the function is not defined, lead to the leaf ⊥.

514 Tom van Dijk and Jaco van de Pol

2. If an MTBDD is a leaf with the label V , then it represents the function
f (x1, . . . ,xN) ≡ V . Otherwise, it is an internal node with label x. After re-
cursively computing fx=1 and fx=0 by interpreting the MTBDDs obtained
by following the high and the low edges, the node represents a function
f (x1, . . . ,xN)≡ if x then fx=1 else fx=0.

Like BDDs, MTBDDs can have complement edges. This works only for leaf
types for which negation is properly defined, i.e., each leaf x has a unique negated
counterpart ¬x, such that ¬¬x = x and ¬x �= x. In general, this does not work for
numbers as 0=−0 in ordinary arithemetic. In addition, this also does not work for
partially defined functions, as the negation of ⊥ is not properly defined. In practice
this means that complement edges are not typically used with MTBDDs.

13.2.4 Algorithms on Decision Diagrams

Many BDD packages implement the basic BDD operations and, not and xor, the
if-then-else (ite) operation, and exists (Table 13.1). Negation ¬ is performed
using complemented edges (Section 13.2.2) and is basically free. See Algorithm 13.1
for a typical implementation of and.

This algorithm showcases all features of a typical decision diagram operation.
Most decision diagram operations first check whether the operation can be applied
immediately to x and y (lines 2–4). This is typically the case when x and y are leaves.
Often there are also other trivial cases that can be checked first. In Algorithm 13.1,
this is the case when x = y or when x = ¬y.

Often, the parameters of an operation can be normalized in some way to increase
the cache efficiency. For example, a∧b and b∧a are the same operation. Normaliza-
tion rules can then rewrite the parameters to some standard form in order to increase
cache utilization, as at line 5. A well-known example is the if-then-else algorithm,
which rewrites using rewrite rules called “standard triples” as described in [13].

x1

x2 x2

⊥ 1 0.5 0.33333

Fig. 13.1: A simple MTBDD for a function which maps x1x2 to 1, x1x2 to 0.5 and
x1x2 to 0.33333. The function is undefined for the input x1x2

13 Multi-core Decision Diagrams 515

Operation Implementation

x∧ y and(x,y)
x∨ y not(and(not(x),not(y)))
¬(x∧ y) not(and(x,y))
¬(x∨ y) and(not(x),not(y))
x⊕ y xor(x,y)
x ↔ y not(xor(x,y))
x → y not(and(x,not(y)))
x ← y not(and(not(x),y))
if x then y else z ite(x,y,z)
∃v : x exists(x,v)
∀v : x not(exists(not(x),v))

Table 13.1: Basic BDD operations on the input BDDs x, y, z

Algorithm 13.1: The BDD Algorithm and, with the BDDs x and y as
Parameters

1 def and(x, y):

2 if x = 1 : return y
3 if y = 1∨ x = y : return x
4 if x = 0∨ y = 0∨ x = ¬y : return 0
5 if x > y : swap x and y
6 if result ← cache[(x,y)] : return result
7 v ← topvar(x,y)
8 low← and(xv=0, yv=0)
9 high← and(xv=1, yv=1)

10 result ← lookupBDDnode(v, low, high)
11 cache[(x,y)] ← result
12 return result

We consult the operation cache (line 6) to see whether this (sub)operation has
been computed earlier. The operation cache is required to reduce the time complexity
of BDD operations from exponential to polynomial in the size of the BDDs.

If x and y are not leaves and the operation is not trivial or in the cache, we use a
function topvar (line 7) to determine the first variable of the root nodes of x and y.
If x and y have different variables in their root nodes, topvar returns the first one
in the variable ordering of x and y. We then compute the recursive application to the
cofactors of x and y with respect to variable v at lines 8–9.

We write xv=i to denote the cofactor of x where variable v takes value i. Since x
and y are ordered according to the same fixed variable ordering, we can easily obtain
xv=i. If the root node of x has the variable v, then xv=i is obtained by following the
low (i = 0) or high (i = 1) edge of x. Otherwise, xv=i equals x.

After computing the suboperations, we compute the result by either reusing
an existing or creating a new BDD node (line 10). This is done by a function
lookupBDDnode, which, given a variable v and the BDDs of resultv=0 and
resultv=1, returns the BDD for result by consulting the unique table.

516 Tom van Dijk and Jaco van de Pol

When the result has been computed, we store it in the operation cache (line 11)
and return the result (line 12).

13.2.5 Parallelism

A major goal in computing is to perform ever larger calculations and to improve
their performance and efficiency. This can be accomplished using various techniques
that are often orthogonal to each other, such as better algorithms, faster processors
and parallel computing using multiple processors. Faster hardware increases the
performance of most computations, often regardless of the algorithm, although
some algorithms benefit more from processor speed while others benefit more from
faster memory access. For suitable algorithms, parallel processing can considerably
improve the performance, on top of what is possible just by increased processor
speeds.

For some algorithms, efficient parallelism is almost trivial. It is no coincidence that
graphics cards contain thousands of small processors, resulting in massive speedups
for very particular applications. Other algorithms are more difficult to parallelize.
For example, some algorithms are inherently sequential, with few opportunities
for the parallel execution of independent calculation paths. Other algorithms have
enough independent paths for parallelization in theory, but are difficult to parallelize
in practice, for example because they are irregular and continually require load
balancing, moving work between processors. Some algorithms are memory-intensive,
i.e., they spend most of their time manipulating data in memory, which can result in
bottlenecks due to the limited bandwidth between the processors and the memory, as
well as time spent waiting in locks.

This chapter discusses the parallelization of algorithms for decision diagrams,
which are large directed acyclic graphs. They are typically irregular and mainly
consist of unpredictable memory accesses with high demands on memory bandwidth.
Decision diagrams are often used as the underlying operations of other algorithms.
If the underlying decision diagram operations are parallelized, then sequential algo-
rithms that use them may also benefit from the parallelization.

Lock-Free Programming

In parallel programs, memory accesses can result in race conditions or data corruption,
for example when multiple threads write to the same location in memory. Typically
data structures are protected against race conditions using locking techniques. While
locks are relatively easy to implement and reason about, they often severely cripple
parallel performance, especially as the number of threads increases. Threads have
to wait until the lock is released, and locks can be a bottleneck when many threads
try to acquire the same lock. Also, locks can sometimes cause spurious delays that

13 Multi-core Decision Diagrams 517

smarter data structures could avoid, for example by recognizing that some operations
do not interfere even though they access the same resource.

A standard technique that avoids locks uses the atomic compare-and-swap
(cas) operation, which is supported by many modern processors.

1 def compare-and-swap(location, expected, newvalue):

2 value← *location
3 if value �= expected : return False
4 *location ← newvalue
5 return True

This operation atomically compares the contents of a given location in shared memory
to some given expected value and, if the contents match, changes the contents to
a given new value. If multiple processors try to change the same bytes in memory
using cas at the same time, then only one succeeds.

Data structures that avoid locks are called non-blocking or lock-free. Such data
structures often use the atomic cas operation to make progress in an algorithm,
rather than protecting a part that makes progress. For example, when modifying a
shared variable, an approach using locks would first acquire the lock, then modify
the variable, and finally release the lock. A lock-free approach would use atomic
cas to modify the variable directly. This requires only one memory write rather than
three, but lock-free approaches are typically more complicated to reason about, and
prone to bugs that are more difficult to reproduce and debug.

13.2.6 Historical Perspective

This section describes various approaches have been tried in the past for parallel
processing of decision diagrams, as discussed in [59].

Massively Parallel Computing (early 1990s)

In the early 1990s, researchers tried to speed up BDD manipulation by parallel
processing. The first paper [34] views BDDs as automata, and combines them by
computing a product automaton followed by minimization. Parallelism arises by
handling independent subformulas in parallel: the expansion and reduction algorithms
themselves are not parallelized. They use locks to protect the global hash table, but
this still results in a speedup that is almost linear with the number of processors.
Most other work in this era implemented BFS algorithms for vector machines [46] or
massively parallel SIMD machines [17, 28] with up to 64K processors. Experiments
were run on supercomputers, such as the Connection Machine. Given the large
number of processors, the speedup (around 10 to 20) was disappointing.

518 Tom van Dijk and Jaco van de Pol

Parallel Operations and Constructions

An interesting contribution in this period is the paper by Kimura et al. [35]. Although
they focus on the construction of BDDs, their approach relies on the observation that
suboperations of a logic operation can be executed in parallel and the results can be
merged to obtain the result of the original operation. Our solution to parallelizing
BDD operations follows the same line of thought, although the work-stealing method
for efficient load balancing that we use was first published two years later [10].
Similarly to [35], Parasuram et al. implement parallel BDD operations for distributed
systems, using a “distributed stack” for load balancing, with speedups from 20–32
on a CM-5 machine [50]. Chen and Banerjee implement the parallel construction
of BDDs for logic circuits using lock-based distributed hash tables, parallelizing on
the structure of the circuits [18]. Yang and O’Hallaron [71] parallelize breadth-first
BDD construction on multi-processor systems, resulting in reasonable speedups of
up to 4× with eight processors, although there is a significant synchronization cost
due to their lock-protected unique table.

Distributed Memory Solutions (late 1990s)

Attention shifted towards Networks of Workstations, based on message passing
libraries. The motivation was to combine the collective memory of computers con-
nected via a fast network. Both depth-first [4, 58, 7] and breadth-first [54] traversal
have been proposed. In the latter, BDDs are distributed according to variable levels.
A worker can only proceed when its level has a turn, so these algorithms are inher-
ently sequential. The advantage of distributed memory is not that multiple machines
can perform operations faster than a single machine, but that their memory can be
combined in order to handle larger BDDs. For example, even though [58] reports
a nice parallel speedup, the performance with 32 machines is still 2× slower than
the non-parallel version. BDDNOW [43] is the first BDD package that reports some
speedup compared to the non-parallel version, but it is still very limited.

Parallel Symbolic Reachability (after 2000)

After 2000, research attention shifted from parallel implementations of BDD op-
erations towards the use of BDDs for symbolic reachability in distributed [29, 19]
or shared memory [23, 21]. Here, BDD partitioning strategies such as horizontal
slicing [19] and vertical slicing [31] were used to distribute the BDDs over the
different computers. Also the saturation algorithm [20], an optimal iteration strat-
egy in symbolic reachability, was parallelized using horizontal slicing [19] and
using the work-stealer Cilk [23], although it is still difficult to obtain good parallel
speedup [21].

13 Multi-core Decision Diagrams 519

Multi-core BDD Algorithms

There is some recent research on multi-core BDD algorithms. There are several
implementations that are thread-safe, i.e., they allow multiple threads to use BDD
operations in parallel, but they do not offer parallelized operations. In a thesis on the
BDD library JINC [49], Chapter 6 describes a multi-threaded extension. JINC’s par-
allelism relies on concurrent tables and delayed evaluation. It does not parallelize the
basic BDD operations, although this is mentioned as possible future research. Also, a
recent BDD implementation in Java called BeeDeeDee [39] allows execution of BDD
operations from multiple threads, but does not parallelize single BDD operations.
Similarly, the well-known sequential BDD implementation CUDD [57] supports
multi-threaded applications, but only if each thread uses a different “manager,” i.e.,
unique table to store the nodes in. Except for our contributions [62, 61, 64] related to
Sylvan, there is no recent published research on modern multi-core shared-memory
architectures that parallelizes the actual operations on BDDs. Recently, Oortwijn et
al. [47, 48] continued our work by parallelizing BDD operations on shared-memory
abstractions of distributed systems using remote direct memory access. Work by
Velev et al. [68] implements BDD operations on GPUs for a small case study with
promising results.

13.3 Parallel Decision Diagrams

The requirements for the efficient parallel implementation of decision diagrams are
not the same as for a non-parallel implementation. We refer to Somenzi [56] for a
general discussion on the implementation of non-parallel decision diagrams. Somenzi
already established several aspects of a BDD package. The two central data structures
of a BDD package are the unique table (or nodes table) and the computed table (or
operation cache). Furthermore, garbage collection is essential for a BDD package, as
most BDD operations continuously create and discard BDD nodes. The two central
data structures are discussed in Section 13.4 and garbage collection in Section 13.5.
The current section presents the parallelization of decision diagram operations by
work-stealing.

13.3.1 Work-Stealing

Operations on decision diagrams are typically recursively defined on the structure of
the inputs. To parallelize decision diagram operations, we consider each subproblem
as a separate task and execute independent tasks in parallel. This type of parallelism
is called task-based parallelism.

For task parallelism that fits a “strict” fork-join model, i.e., each task creates the
subtasks that it depends on, work-stealing is well known to be an effective load-

520 Tom van Dijk and Jaco van de Pol

Algorithm 13.2: The Algorithm (left) is Implemented (right) Using SPAWN,
SYNC and CALL

1 do in parallel:

2 K← F1(x, y, z)
3 L← F2(a, b, c)
4 M← F3(g, h)

1 SPAWN(F1, x, y, z)
2 SPAWN(F2, a, b, c)
3 M← CALL(F3, g, h)
4 L← SYNC
5 K← SYNC

balancing method [10], with implementations such as Cilk [11, 27] and Wool [24, 25]
that allow parallel programs to be written in a style similar to sequential programs [2].
Work-stealing has been proven to be optimal for a large class of problems and has
tight memory and communication bounds [10].

In work-stealing, tasks are executed by a fixed number of workers, typically equal
to the number of processor cores. Each worker owns a task pool into which it inserts
new subtasks created by the task it currently executes. Idle workers steal tasks from
the task pools of other workers. Worker are idle either because they do not have any
tasks to perform (e.g., at the start of a computation), or because all their subtasks have
been stolen and they have to wait for the result of the stolen subtasks to continue the
current task. Typically, one worker starts executing a root task and the other workers
perform work-stealing to acquire subtasks.

We use do in parallel to denote that tasks are executed in parallel. Programs
in the Cilk/Wool style are then implemented like in Algorithm 13.2. The SPAWN
keyword creates a new task. The SYNC keyword matches with the last unmatched
SPAWN, i.e., operating as if spawned tasks are stored on a stack. It waits until that
task is completed and retrieves the result. Every SPAWN during the execution of the
program must have a matching SYNC. The CALL keyword skips the task stack and
immediately executes a task.

One important aspect of the work-stealing algorithm is victim selection. For
example in systems with hierarchy, e.g., a network of workstations, it might be useful
to steal from local workers first before trying to steal from a remote worker. Another
strategy would be to remember how much work other workers have after a steal
attempt, and use this to intelligently select targets. In our implementation, workers
with an empty task pool steal from random victims.

When synchronizing with a stolen task, a possible strategy for the victim is to steal
from the thief until the stolen task is completed. By stealing back from the thief, a
worker executes subtasks of the stolen task. This technique is called leapfrogging [69].
When stealing from random workers instead, the size of the task pool of each worker
could grow beyond the size needed for complete sequential execution [25], since
stealing will build a new stack on top of the blocked join. Using leapfrogging rather
than stealing from random workers thus limits the space requirement of the task pools
to that of sequential execution, although in practice it is expensive to guarantee that
the tasks that are stolen from the thief are really subtasks of the original task. It might
be possible that the thief finished the original task and stole a different branch of the

13 Multi-core Decision Diagrams 521

Work-stealing operations Task pool operations

spawn(task) push(task)
sync peek, pop
steal-and-run(victim) steal

Table 13.2: Operations of the work-stealing algorithm and matching operations of
the task pool of each worker

task tree after the victim checked the status of the stolen task. Our implementation
also uses the leapfrogging strategy.

Another concern is which task(s) to steal. A simple algorithm is to steal the first
unstolen task from the bottom of the stack. A variation could be to steal multiple
tasks, or to steal a random task from anywhere in the stack. In our implementation,
thieves steal the first unstolen task from the bottom of the stack.

See Table 13.2 for an overview of the work-stealing operations and how they
match with operations on the task pool. The methods spawn and sync implement
the keywords SPAWN and SYNC. The method steal-and-run tries to steal a task
from the given victim and, if successful, executes the task and communicates the
result back to the owner of the task. The methods push, peek, pop and steal
are implemented by the task pool:

• The push, peek and pop operations are only used by the owner of the stack,
and the steal operation only by thieves.

• The push operation puts a task on the stack.
• The peek operation fixes the status of the task at the top of the stack: either
stolen or available as work. After peek, the top task, if not stolen, cannot be
stolen until the next push (or if peek is called again).

• The pop operation removes the topmost task from the stack. Furthermore we
assume that the task data remains in the task pool until overwritten by a push
operation.

• The steal operation steals a task from the bottom of the stack, changing its
status from available work to stolen work. Stolen tasks are kept on the stack so
the results of tasks can be communicated back to the original owner of the task.

Different implementations of the work-stealing stack can be used, as long as
they implement the described functionality. Experiments show that the difference
in performance between the private deque by Acar et al. [2], the shared deque in
Wool [24, 25] and the shared deque we implemented in Lace [63] are relatively small;
they all have sufficient scalability, although Lace also implements a stop-the-world
feature required for garbage collection (Section 13.5).

522 Tom van Dijk and Jaco van de Pol

Algorithm 13.3: The Implementation of Work-Stealing Using Leapfrogging
when Waiting for a Stolen Task to Finish, i.e., steal from the thief

1 def spawn(task):

2 push(task)

3 def sync():

4 res ← peek()
// res is Work(task) or Stolen(task)

5 if res=Work(task) :

6 pop()
7 return task.execute()
8 else:

9 while task.thief= None : (loop)
10 while ¬ task.done : steal-and-run (task.thief)
11 pop-stolen()
12 return task.result

13 def steal-and-run(victim):

14 if victim.steal()= Task(stolentask) :

15 stolentask.thief← me
16 result ← stolentask.execute()
17 stolentask.result← result
18 stolentask.done← True

19 thread worker(id, roottask):

20 done← False
21 if id= 0 :

22 roottask.execute()
23 done← True
24 else: while done is False: steal-and-run(random victim)

13.3.2 Parallel Operations with Work-Stealing

Decision diagram operations such as and (Algorithm 13.1) are parallelized by
executing the subtasks (lines 9–10) in parallel:

8 do in parallel:

9 low← and(xv=0, yv=0)
10 high← and(xv=1, yv=1)

This is equivalent to the following:

8 SPAWN(and, xv=0, yv=0)
9 high← CALL(and, xv=1, yv=1)

10 low ← SYNC

A more involved example is the parallelized algorithm exists (Algorithm 13.4),
which computes existential quantification. This algorithm receives the input parame-
ters x and V , where x is the BDD representing the function to which quantification
is applied, and V is the BDD representing the conjunction of the variables that are

13 Multi-core Decision Diagrams 523

Algorithm 13.4: Parallelized BDD Algorithm exists, with the BDD x
andV the Cube of Variables that are Abstracted via Existential Quantification

1 def exists(x, V):

2 if x = 0∨ x = 1∨V = /0 : return x
3 v = var(x)
4 while V �= /0∧var(V)< v : V ← next(V)
5 if V = /0 : return x
6 if result ← cache[(x,V)] : return result
7 if v = var(V) :

8 if xv=0 = 1∨ xv=1 = 1∨ xv=0 = ¬xv=1 : result← 1
9 else:

10 low← exists(xv=0, next(V))
11 if low= 1 : result← 1
12 else:

13 high← exists(xv=1, next(V))
14 result← or(low, high)

15 else:

16 do in parallel:

17 low← exists(xv=0, V)
18 high← exists(xv=1, V)
19 result ← lookupBDDnode(v, low, high)
20 cache[(x,V)] ← result
21 return result

abstracted away from x. After the trivial cases (line 2), we check whether V actu-
ally contains variables that are in the BDD (lines 3–5), exploiting the fact that V
is also an ordered BDD. This is also a normalization step for the cache, which is
checked at line 6. Now, there are two cases: either the current root variable v is in V
(lines 7–14) or it is not in V (lines 15–19). In the second case, we simply perform the
two suboperations in parallel and compute the result. In the first case, after checking
some trivial cases, we can either 1) perform the two suboperations in parallel; 2)
perform the “low” suboperation first; or 3) perform the “high” suboperation first. If
either of these suboperations returns 1, then the other does not need to be computed.
The advantage of option 1 is that there is more opportunity for parallelization, at
the cost of possible extra work. However, this extra independent work might not be
necessary, since there is already a lot of independent work from the parallelization at
lines 17–18 and inside the or operation. In Algorithm 13.4, we compute the “low”
suboperation first.

In model checking using decision diagrams, relational products play a central role.
Relational products compute the successors or the predecessors of (sets of) states.
Typically, states are encoded using Boolean variables x = x1,x2, . . . ,xN . Transitions
between these states are represented using Boolean variables x for the source states
and variables x′ = x′1,x

′
2, . . . ,x

′
N for the target states. Given a set of states Si encoded

as a BDD on variables x, and a transition relation R encoded as a BDD on variables
x ∪ x′, the set of states S′i+1 encoded on variables x′ is obtained by computing

524 Tom van Dijk and Jaco van de Pol

Algorithm 13.5: The Parallel Algorithm relnext, which Given the BDDs
S (representing a set of states), R (representing a transition relation) and
V (the cube of interleaved variables x∪x′) Computes the Set of Successor
States Defined on x, i.e.,

(∃x : (S∧R)
)
[x′ := x]. We Assume that all Variables

in R are also in V
1 def relnext(S, R, V):

2 if S = 0∨R = 0 : return 0
3 if S = 1∧R = 1 : return 1
4 v = topvar(S,R)
5 while var(V)< v : V ← next(V)

// if V = /0, we assume R is irrelevant
6 if V = /0 : return S
7 if result ← cache[(S,R,V)] : return result
8 if v = var(V) :

9 x, x’← unprimed v, primed v
10 V’ ← V without x and x’
11 do in parallel:

12 a← relnext(Sx=0, Rx=0,x′=0, V ′)
13 b← relnext(Sx=1, Rx=1,x′=0, V ′)
14 c← relnext(Sx=0, Rx=0,x′=1, V ′)
15 d← relnext(Sx=1, Rx=1,x′=1, V ′)
16 do in parallel:

17 low← or(a, b)
18 high← or(c, d)
19 result ← lookupBDDnode(x, low, high)
20 else:

// v is not in R, by assumption
21 do in parallel:

22 low← relnext(Sv=0, R, V)
23 high← relnext(Sv=1, R, V)
24 result ← lookupBDDnode(v, low, high)
25 cache[(S,R,V)] ← result
26 return result

S′i+1 = ∃x : (Si∧R). BDD packages typically implement an operation and_exists
that combines ∃ and ∧ to compute S′i+1.

Typically we want the BDD of the successor states defined on the unprimed
variables x instead of the primed variables x′, so the and_exists call is then
followed by a variable substitution that replaces all occurrences of variables from
x′ with the corresponding variables from x. Furthermore, the variables are typically
interleaved in the variable ordering, like x1,x′1,x2,x

′
2, . . . ,xN ,x′N , as this often results

in smaller BDDs. This combination of and_exists and variable renaming can
be done with a specialized operation relnext, which computes the successors of
sets of states, where the transition relation is encoded with the interleaved variable
ordering.

See Algorithm 13.5 for the parallel implementation of relnext. This function
takes as input a set S, a transition relation R and the set of variables V , which is the

13 Multi-core Decision Diagrams 525

union of the interleaved sets x and x′ (the variables on which the transition relation
is defined). We first check for terminal cases (lines 2–3). These are the same cases
as for the ∧ operation. Then we process the set of variables V to skip variables that
are not in S and R (lines 5–6). After consulting the cache (line 7), either the current
variable is in the transition relation, or it is not. If it is not, we perform the usual
recursive calls and compute the result (lines 21–24). If the current variable is in the
transition relation, then we let x and x′ be the two relevant variables (either of these
equals v) and compute four subresults, namely for the transitions (a) from 0 to 0, (b)
from 1 to 0, (c) from 0 to 1, and (d) from 1 to 1 in parallel (lines 11–15). We then
abstract from x′ by computing the existential quantifications in parallel (lines 16–18),
and finally compute the result (line 19). This result is stored in the cache (line 25)
and returned (line 26).

13.3.3 Conclusion

This section discussed using work-stealing to perform operations on decision di-
agrams in parallel. We looked at three operations in particular: and, which is a
prototype for many simple decision diagram operations; exists, which adds the
complexity that the subtasks are not completely independent (if “low” returns 1,
“high” does not need to be computed); and relnext, which adds the complexity of
having two phases with independent subtasks.

13.4 Concurrent Data Structures

To efficiently parallelize decision diagram operations, we must perform memory
operations in a scalable manner, i.e., using optimized scalable data structures. This
section describes the organization of decision diagram nodes in memory, as well as
the design of the unique table and the operation cache.

13.4.1 Representation of Nodes

The representation of BDD and MTBDD nodes in memory is important for both
the sequential and the parallel performance of decision diagram implementations.
We use 16 bytes for all types of nodes, so we can use the same unique table for
all nodes and have a fixed node size. With 16 bytes per node, exactly four nodes
fit in a cacheline of 64 bytes (the size of the cacheline for many current computer
architectures, in particular the x86 family that we use). If the unique table is properly
aligned in memory, then only one cacheline needs to be accessed when accessing a
node.

526 Tom van Dijk and Jaco van de Pol

We use 40 bits to store the index of a node in the unique table. This is sufficient to
store up to 240 nodes, i.e., 16 terabytes of nodes, excluding overhead costs.

Sylvan defines the type MTBDD as a 64-bit integer, representing an edge to an
MTBDD node. The lowest 40 bits represent the location of the node in the nodes
table, and the most significant bit stores the complement mark [13], mainly used by
BDDs. The BDD 0 is reserved for the leaf false, with the complemented edge to 0
(i.e., 0x8000000000000000) meaning true.

Internal BDD and MTBDD nodes store the variable label (24 bits), the low edge
(40 bits), the high edge (40 bits), the complement bit of the high edge (1 bit, the first
bit below) and the fact they are not a leaf (1 bit, the second bit below, set to 0):

high edge variable low edge

MTBDD leaves store the leaf type (32 bits), the leaf value (64 bits) and the fact
that they are a leaf (1 bit, set to 1):

leaf type leaf value

The unused space bits are set to 0. They can also be used by the decision diagram
library for other node types or for temporary marking of nodes in algorithms, which
is beyond the scope of this chapter.

13.4.2 Unique Table

The unique table stores all decision diagram nodes and is essential to avoid duplicate
nodes. This table is typically implemented as a hash table, in particular because the
find-or-insert operation is performed in time O(1) on average (amortized) by
a hash table.

The unique table can either be one shared table, or be split into multiple parts
somehow. For example, Somenzi [56] argues for a subtable for each variable level,
as this makes the implementation of variable reordering easier. The disadvantage of
subtables is that their sizes must be adjusted dynamically, thus requiring the different
parallel processes to cooperate on performing garbage collection and resizing when
subtables are full. In addition, there is some overhead to compute the correct size for
each table, which can be avoided by using a single table. Finally, subtables require
the additional complexity of decreasing subtable sizes and compressing decision
diagrams, which we avoid by using a single table that only increases in size when
this is needed.

In the past, there have been various proposals to split the unique table into several
parts for parallel applications, for example to assign parts of the decision diagrams to
certain processors or workstations. This is a consideration that can be orthogonal to
parallelism. As we use work-stealing to perform the load balancing of the decision

13 Multi-core Decision Diagrams 527

diagram operations, we have no control over which processor performs specific
operations. Therefore, we use a single continuous block of memory, and we let the
operating system take care of allocating memory blocks on all available memories in
the system.

The unique table essentially requires the following operations, which must be
highly scalable:

• a find-or-insert method, which, given a 16-byte node, either finds the
existing node in the table, or creates a new node.

• a method to delete nodes for garbage collection. Our implementation has a
separate “data array” containing the nodes and a “hash array” containing the
metadata. We require three operations:

– clear removes all entries from the hash array;
– mark marks a given node for reinsertion in the hash array; and
– rehash reinserts a given node in the hash array.

Our design strictly separates lookup and insertion of nodes from a stop-the-world
garbage collection phase, during which the table may be resized. From the perspective
of the nodes table algorithms (and correctness), all threads of the program are in one
of two phases:

1. During normal operation, threads only call the find-or-insert operation,
which takes as input the 16-byte data and either returns a unique identifier for
the data, or raises the TableFull signal if the algorithm fails to insert the data.

2. During garbage collection, the find-or-insert operation is never called.
Instead, methods clear, mark and rehash (described in Section 13.5) are
called to perform garbage collection.

This simplifies the requirements for the hash tables. The find-or-insert opera-
tion must have the following property: if the operation returns a value for some given
data, then other find-or-insert operations may not return the same value for
a different input, or return a different value for the same input. This property must
hold between garbage collections; garbage collection obviously breaks the property
for nodes that are not kept during garbage collection, as nodes are removed from the
table to make room for new data.

The unique table we use in Sylvan is based on the hash table in [36], which is
designed to store visited states in model checking. This hash table incorporates two
ideas that we also use in our design:

• Using a probe sequence called “walking-the-line” that is efficient with respect to
transferred cachelines.

• Separating the stored data in a “data array” and the hash of the data in the “hash
array” to avoid directly comparing the data.

Furthermore, to manage the “data array” we use bit arrays as a convenient parallel
allocator, although other scalable parallel allocation mechanisms for fixed-size (16
bytes) memory blocks could be used to manage the data array.

528 Tom van Dijk and Jaco van de Pol

72 73 74 75 76 77 78 79

232 233 234 235 236 237 238 239

296 297 298 299 300 301 302 303

Order of buckets:

236–239, 232–235,
297–303, 296,
77–79, 72–76

Fig. 13.2: Example of the walking-the-line probe sequence, with the starting buckets
236, 297 and 77 based on the first three hash values of the data

The Walking-the-Line Probe Sequence

Every hash table needs to implement a strategy to deal with hash table collisions, i.e.,
when different data hashes to the same location in the table. To find a location for the
data in the hash table, some hash tables use open addressing: they visit buckets in the
hash table in a deterministic order called the probe sequence, to either detect that the
data is already in the hash table, or to find an empty bucket, which indicates that the
data can be inserted into that bucket. One of the simplest probe sequences is linear
probing, where the data is hashed once to obtain the first bucket (e.g., bucket 61), and
the probe sequence consists of all buckets from that first bucket (e.g., 61, 62, 63, ...).

An alternative to linear probing is walking-the-line, proposed in [36]. Since data
in a computer is transferred in blocks called cachelines, it is more efficient to use
the entire cacheline instead of only a part of the cacheline. For example, if there are
eight buckets per cacheline and we assume that the buckets are properly aligned so
that the first cacheline starts with bucket 0, then linear probing starting at bucket 61
would only check buckets 61–63 of the first accessed cacheline. In walking-the-line,
the other buckets in that cacheline are also checked, so after buckets 61–63, also
buckets 56–60 would be checked. Then, a new hash value is obtained for the data
using a hash function to obtain the next starting bucket. In theory, this procedure could
be repeated forever; in practice, after a certain number of cachelines the procedure
terminates with the result that the table is full. See also Figure 13.2 for an example
of walking-the-line.

Separated Arrays

The hash table stores the hash of the data in each bucket in a separate array. The idea is
that the find-or-insert algorithm does not need to access the stored data if the
stored hash does not match with the hash of the data given to find-or-insert.
This reduces the number of accessed cachelines during find-or-insert.

13 Multi-core Decision Diagrams 529

hash index in data array data

hash index in data array data

hash index in data array data

24 bits 40 bits

8 bytes 16 bytes

.

0:

1:

2:

Hash array: Data array:

Fig. 13.3: Layout of the hash array and data array

Bit Arrays for Data Management

We use a separate bit array databits to implement a parallel allocator for the data
array. Furthermore, to avoid having to use cas for every change to databits,
we divide this bit array into regions, such that every region matches exactly with
one cacheline of the databits array, i.e., 512 buckets per region if there are
64 bytes in a cacheline, which is the case for most current architectures. Every
worker has exclusive access to one region, which is managed with a second bit array
regionbits. Only changes to regionbits (to claim a new region) require an
atomic cas. We therefore only use normal writes for insertion and uninsertion into
the data array, and only occasionally an atomic cas during speculative insertion to
obtain exclusive access to the next region of 512 buckets.

A claimed region is not given back until garbage collection, which resets claimed
regions. On startup and after garbage collection, the regionbits array is cleared
and all threads claim an initial region using the claim-next-region method in
Algorithm 13.6. All threads start at a different position (distributed over the entire
table) for their first claimed region, to minimize the interactions between threads.
The databits array is empty at startup and during garbage collection threads use
atomic cas to set the bits in databits of decision diagram nodes that must be
kept in the table. In addition, the bit of the first bucket is always set to 1 to avoid
using the index 0 since this is a reserved value in Sylvan.

The layout of the hash array and the data array is given in Figure 13.3. We use a
hash function that never hashes to 0 and we forbid nodes with the index 0 because 0
is a reserved value in Sylvan. The fields hash and index are therefore never 0, unless
the hash bucket is empty, so the field H to indicate that hash and index have valid
values is not necessary. Manipulating the hash array bucket is also simpler, since we
no longer need to take into account changes to the field D.

Inserting data into the hash table consists of three steps. First the algorithm tries
to find whether the data is already in the table. If this is not the case, then a new
bucket in the data array is reserved in the current region of the thread with the
reserve-data-bucket function. If the current region is full, then the thread

530 Tom van Dijk and Jaco van de Pol

Algorithm 13.6: Algorithm for Parallel find-or-insert of the Hash
Table, with 512 Buckets per Region. The Variable myregion is a Thread-
Specific Variable

1 def find-or-insert(data):

2 index← 0
3 h← hash(data)
4 for s ∈ probe-sequence(data) :

5 V← harray[s]
6 if V= 0 :

7 if index= 0 :

8 index← reserve-data-bucket()
9 darray[index]← data

10 if cas(harray[s], 0, {h, index}) : return index
11 else: V← harray[s]
12 if V.hash= h∧darray[V.index]= data :

13 if index �= 0 : free-data-bucket(index)
14 return V.index
15 raise TableFull

16 def reserve-data-bucket():

17 loop:

18 if myregion has a bit set to 0 :

19 i← first bit in myregion that is 0
20 set-bit(databits, 512×myregion+ i, 1)
21 return 512×myregion+ i
22 else: myregion← claim-next-region(myregion)

23 def free-data-bucket(d):

24 set-bit(databits, d, 0)

25 def claim-next-region(oldregion):

26 newregion← (oldregion+1) mod (tablesize/512)
27 while newregion �= oldregion :

28 loop:

29 if the bit for newregion is 1 : break

30 if set-bit-cas(regionbits, newregion, 0, 1) : return newregion
31 newregion ← (newregion+1) mod (tablesize/512)
32 raise TableFull

claims a new region with the claim-next-region function. Note that it may be
possible that the next region contains used buckets, if there has been a garbage col-
lection earlier. Afterwards the new bucket is inserted into the hash array. Sometimes,
the data has been inserted concurrently (by another thread) and then the bucket in the
data array is freed again with the free-data-bucket function, so it is available
the next time the thread wants to insert data.

The main method of the hash table is find-or-insert. See Algorithm 13.6.
The algorithm uses the local variable “index” to keep track of whether the data is
inserted into the data array. This variable is initialized to 0 (line 2), which signifies
that data is not yet inserted into the data array. For every bucket in the probe sequence,

13 Multi-core Decision Diagrams 531

we first check whether the bucket is empty (line 6). In that case, the data is not yet
in the table. If we did not yet write the data in the data array, then we reserve the
next bucket and write the data (lines 7–9). We use atomic cas to insert the hash and
index into the hash array (line 10). If this is succesful, then the algorithm is done
and returns the location of the data in the data array. If the cas operation fails, some
other thread inserted data here and we refresh our knowledge of the bucket (line 11)
and continue at line 12. If the bucket is not empty, then we compare the stored hash
with the hash of our data, and if this matches, we compare the data in the data array
with the given input (line 12). If this matches, then we may need to free the reserved
bucket (line 13) and we return the index of the data in the data array (line 14). If we
finish the probe sequence without inserting the data, we raise the TableFull signal
(line 15).

The find-or-insert method relies on reserve-data-bucket and on
free-data-bucket, which are also given in Algorithm 13.6. They are fairly
straightforward.

The claim-next-region method searches in the regionbits array for
the first 0-bit. The value tablesize here represents the size of the entire table. We
use a simple linear search and a cas-loop to actually claim the region. Note that
we may be competing with threads that are trying to set the bit of a different region,
since the smallest range for the atomic cas operation is 1 byte or 8 bits.

13.4.3 Computed Table

The operation cache is a hash table that stores intermediate results of BDD operations.
It is well known that an operation cache is required to reduce the worst-case time
complexity of BDD operations from exponential time to polynomial time [56]. As
with the unique table, we use only one shared operation cache for all operations,
because we want to minimize interaction between workers, such as synchronization
when shared parts of memory are resized.

In [56], Somenzi writes that a lossless computed table guarantees polynomial cost
for the basic synthesis operations, but that lossless tables (which do not throw away
results) are not feasible when manipulating many large BDDs and in practice lossy
computed tables (which may throw away results) are implemented. If the cost of
recomputing subresults is sufficiently small, it can pay to regularly delete results or
even prefer to sometimes skip the cache to avoid data races. We design the operation
cache to abort operations as early as possible when there may be a data race or the
data may already be in the cache.

We use an operation cache that consists of two arrays: the hash array and the data
array. See Figure 13.4 for the layout.

Since we implement a lossy cache, the design of the operation cache is extremely
simple. We do not implement a special strategy to deal with hash collisions, but
simply overwrite the old results. There is a trade-off between the cost of recomputing
operations and the cost of synchronizing with the cache. For example, the caching

532 Tom van Dijk and Jaco van de Pol

lock hash tag key value

lock hash tag key value

lock hash tag key value

1 bit 15 bits 16 bits 24 bytes 8 bytes

4 bytes 32 bytes

.

0:

1:

2:

Hash array: Data array:

Fig. 13.4: Layout of the operation cache

Algorithm 13.7: The cache-put Algorithm
1 def cache-put(key, value):

2 h, location← hash(key)
3 s← harray[location]
4 if s.lock : return

5 if s.hash = h : return

6 if not cas(harray[location], s, {1,h,s.tag+1}) : return

7 darray[location] ← {key,value}
8 harrray[location] ← {0,h,s.tag+1}

granularity (see Section 13.4.3) increases the number of recomputed operations but
improves the performance in practice.

The most important concern for correctness is that every result obtained via
cache-getwas inserted earlier with cache-put, and the most important concern
for performance is that the number of memory accesses is as low as possible. To
ensure this, we use a 16-bit “tag” counter that increments (modulo 4096) with every
update to the bucket, and check this value before reading the cache and after reading
the cache to check that the obtained result is valid. The chance that this tag counter
is the same for a different result is astronomically small, as this requires exactly
4096 cache-put operations on the same bucket by other workers between the first
and the second time the tag is read in cache-get, and the last of these 4096 other
operations must have the same hash value but different data.

We reserve 24 bytes of the bucket for the operation and its parameters. We use
the first 64-bit value to store a BDD parameter and the operation identifier. The
remaining 128 bits store other parameters, such as up to two 64-bit values, or up to
three BDDs (123 bits, with 41 bits per BDD with a complement edge). The same
holds for MTBDDs and LDDs. The result of the operation can be any 64-bit value or
a BDD. Note that with 32 bytes per bucket and a properly aligned array, accessing a
bucket requires only one cacheline transfer.

See Algorithms 13.7 and 13.8 for the cache-put and cache-get algorithms.
The algorithms are quite straightforward. We use a 64-bit hash function that

returns sufficient bits for the 15-bit h value and the location value. The h value is

13 Multi-core Decision Diagrams 533

Algorithm 13.8: The cache-get Algorithm
1 def cache-get(key):

2 h, location← hash(key)
3 s← harray[location]
4 if s.lock : return ⊥
5 if s.hash �= h : return ⊥
6 storedkey, value← darray[location]
7 if storedkey �= key : return ⊥
8 if s �= harray[location] : return ⊥
9 return value

used for the hash in the hash array, and the location for the location of the bucket
in the table. The cache-put operation aborts as soon as some problem arises, i.e.,
if the bucket is locked (line 4), or if the hash of the stored key matches the hash of
the given key (line 5), or if the cas operation fails (line 6). If the cas operation
succeeds, then the bucket is locked. The key-value pair is written to the cache array
(line 7) and the bucket is unlocked (line 8, by setting the locked bit to 0).

In the cache-get operation, when the bucket is locked (line 4), we abort instead
of waiting for the result. We also abort if the hashes are different (line 5). We read
the result (line 6) and compare the key to the requested key (line 7). If the keys
are identical, then we verify that the cache bucket has not been manipulated by a
concurrent operation by comparing the “tag” counter (line 8).

It is theoretically possible that between lines 6–8 of the cache-get operation,
exactly 4096 cache-put operations are performed on the same bucket by other
workers, with at least one of these such that the comparison at line 7 succeeds. The
chances of this occurring are astronomically small. The reason we choose this design
is that this implementation of cache-get only reads from memory and never
writes. Memory writes cause additional communication between processors and with
the memory when writing to the cacheline, and also force other processor caches
to invalidate their copy of the bucket. We also want to avoid locking buckets for
reading, because locking often causes bottlenecks. Since there are no loops in either
algorithm, both algorithms are wait-free.

13.5 Garbage Collection

Operations on decision diagrams typically create many new nodes and discard
old nodes. Nodes that are no longer referenced are typically called “dead nodes.”
Garbage collection, which removes dead nodes from the unique table, is essential for
the implementation of decision diagrams. Since dead nodes are often reused in later
operations, garbage collection should be delayed as long as possible [56].

There are various approaches to garbage collection. For example, a reference
count could be added to each node, which records how often the node is referenced.

534 Tom van Dijk and Jaco van de Pol

Nodes with a reference count of zero are either immediately removed when the
count decreases to zero, or during a separate garbage collection phase. Another
approach is mark-and-sweep, which marks all nodes that should be kept and removes
all unmarked nodes. We refer to [56] for a more in-depth discussion of garbage
collection.

For a parallel implementation, reference counts can incur a significant cost, as
accessing nodes implies continuously updating the reference count, increasing the
amount of communication between processors, as writing to a location in memory
requires all other processors to refresh their view on that location. This is not a severe
issue when there is only one processor, but with many processors this results in
excessive communication, especially for nodes that are commonly used.

When parallelizing decision diagram operations, we can choose to perform
garbage collection “on the fly”, allowing other workers to continue inserting nodes,
or we can “stop-the-world” and have all workers cooperate on garbage collection.
We use a separate garbage collection phase, during which no new nodes are inserted.
This greatly simplifies the design of the hash table, and we see no major advantage
to allowing some workers to continue inserting nodes during garbage collection.

Some decision diagram implementations maintain a counter that counts how many
buckets in the nodes table are in use and triggers garbage collection when a certain
percentage of the table is in use. We want to avoid global counters like this and
instead use a bounded “probe sequence” (see Section 13.4) for the nodes table: when
the algorithm cannot find an empty bucket in the first K buckets, garbage collection
is triggered. In simulations and experiments, we find that this occurs when the hash
table is between 80% and 95% full.

As described in Section 13.4, decision diagram nodes are stored in a “data array,”
separated from the metadata of the unique table, which is stored in the “hash array.”
Nodes can be removed from the hash table without deleting them from the data
array, simply by clearing the hash array. The nodes can then be reinserted during
garbage collection, without changing their location in the data array, thus preserving
the identity of the nodes.

We use a mark-and-sweep approach, where we keep track of all nodes that must be
kept during garbage collection. Our approach of parallel garbage collection consists
of the following steps:

1. Initiate the operation using the work-stealing framework (e.g., as supported by
Lace) to arrange the “stop-the-world” interruption of all ongoing tasks. This
feature is described below.

2. Clear the hash array of the unique table, and clear the operation cache. The
operation cache is cleared instead of checking each entry individually after
garbage collection, although that would also be possible.

3. Mark all nodes that we want to keep, allowing various mechanisms that keep
track of the decision diagram nodes that we want to keep (see below).

4. Count the number of kept nodes and optionally increase the size of the unique
table. Also optionally change the size of the operation cache.

5. Rehash all marked nodes in the hash array of the unique table.

13 Multi-core Decision Diagrams 535

The garbage collection process itself is also executed in parallel using task paral-
lelism. Removing all nodes from the hash table and clearing the operation cache is an
instant operation that is amortized over time by the operating system by reallocating
the memory (see below). Marking nodes that must be kept occurs in parallel, mainly
by implementing the marking operation as a recursive task. Counting the number of
used nodes and rehashing all nodes (steps 4–5) is also parallelized using a standard
binary divide-and-conquer approach , which distributes the memory pages over all
workers.

Various mechanisms can be used to store the set of nodes to be kept in step 3.
Operations must often temporarily store subresults that may not be removed; we use
thread-local stacks to store these subresults, which minimizes worker interactions.
External references (outside of operations) are less sensitive to these interactions; one
can use any kind of set implementation (we use a simple hash table) to implement
this; an important optimization is to not store references to nodes directly, but pointers
to the variables; this way, updating a variable does not incur calls to remove and add
references.

One helpful feature for garbage collection in Sylvan that we implemented in the
work-stealing framework Lace is a feature that suspends all current tasks and starts a
new task tree. Lace implements a macro NEWFRAME(...) that starts a new task
tree, where one worker executes the given task and all other workers perform work-
stealing to help execute this task in parallel. The exact implementation depends on
the queue and involves several steps, where workers regularly check a flag in shared
memory and use barriers to coordinate starting a new task tree. Further details are
beyond our scope here, as they strongly depend on the used queue implementation.
Interested readers are referred to [59].

13.6 Empirical Results

This section showcases the performance of parallel decision diagram operations in
a number of applications, as reported in the literature. We briefly introduce model
checking using decision diagrams in Section 13.6.1. We show the performance for
symbolic on-the-fly reachability in the LTSMIN toolset as discussed in [62, 61, 64,
33, 59] in Section 13.6.2. For symbolic bisimulation minimization, which is related
to symbolic model checking, we obtained good performance results in [65], which
we report in Section 13.6.3. Finally, in Section 13.6.4 we discuss a performance
comparison with other decision diagram implementations [60], showing that decision
diagrams can be parallelized effectively without much overhead.

536 Tom van Dijk and Jaco van de Pol

13.6.1 Symbolic Model Checking

As modern society increasingly depends on automated and complex systems, the
safety demands on such systems increase as well. We depend on automated systems
for basic infrastructure, to clean our water, to supply energy, to control our cars and
trains, to monitor and process our financial transactions and for the internet. We use
systems for entertainment when watching TV or using the phone, or for cooking
with modern stoves, microwaves and fridges. Failure or unexpected behavior in these
ubiquitous systems can have many consequences, from mild annoyances to fatal
accidents. This motivates research into the formal verification of such systems, as
well as computing properties such as failure rates and time to recovery.

In model checking, systems are modeled as sets of possible states of the system
and transitions between these states. System states are typically represented by
Boolean vectors. Fixed-point algorithms, which are procedures that repeatedly apply
some operation until a fixed point is reached, play a central role in many model
checking algorithms. An example of a fixed-point algorithm is state space exploration
(“reachability”), which computes all states reachable from the initial state of the
system. Many model checking algorithms depend on state space exploration to
determine the number of states, to check whether an invariant is always true, to find
cycles and deadlocks, and so forth.

A major challenge in model checking is that the space and time requirements of
these algorithms increase exponentially with the size of the models. One technique to
alleviate this problem is symbolic model checking [15, 16]. Symbolic model checking
operates on sets of states and transitions, rather than individual states and transitions.
These sets are then represented by their characteristic (Boolean) functions, which can
be stored using BDDs. One advantage of using BDDs for fixed point computations is
that equivalence testing is a trivial check, since BDDs uniquely represent Boolean
functions. As small Boolean formulas can describe very large state spaces, symbolic
model checking has been very successful at pushing the limits of model checking in
the past [15]. Symbolic representations are also quite natural for the composition of
multiple transition systems, e.g., when composing systems from subsystems.

13.6.2 Symbolic On-the-Fly Reachability

LTSMIN is a model checking toolset that provides a language-independent Parti-
tioned Next-State Interface (PINS), which connects various input languages to model
checking algorithms [9, 37, 62, 33, 42]. In PINS, the states of a system are repre-
sented by vectors of N integer values. Furthermore, transitions are distinguished in K
disjunctive “transition groups,” i.e., each transition in the system belongs to one of
these transition groups. The transition relation of each transition group usually only
depends on a subset of the entire state vector called the “short vector,” further distin-
guished by the variables that are “read” and the variables that are “written” [42]. This
enables the efficient encoding of transitions that only affect some integers of the state

13 Multi-core Decision Diagrams 537

Experiment T1 T48 T1/T48

firewire_link.1 4.24 0.48 8.8
anderson.1 8.93 6.21 1.4
firewire_tree.1 4.23 0.30 14.1
blocks.4 635.86 17.27 36.8
collision.5 341.57 10.99 31.1
lifts.8 416.04 13.05 31.9
exit.4 494.85 13.95 35.5
telephony.8 915.61 28.18 32.5

Sum of all 269 models 16231 896 18.1

Table 13.3: Benchmark results (runtimes in seconds) for symbolic on-the-fly reach-
ability with the LTSMIN toolset. Each data point is the average of at least five
measurements

vector. Exploiting this information lets the PINS interface work in a quasi-symbolic
way, as a single pair of short vectors can represent many transition relations on the
full state vector. Initially, LTSMIN does not have knowledge of the transitions in
each transition group, and only the initial state is known. The transition system is
explored by learning new transitions via the PINS interface, which are then added to
the transition relation.

We evaluated the application of parallelization to LTSMIN [64, 59]. The exper-
imental evaluation was based on the BEEM model database [51]. We performed
the benchmarks on 269 benchmark models on a 48-core machine, consisting of
four AMD OpteronTM 6168 processors with 12 cores each and 128 GB of internal
memory. A summary of results is given in Table 13.3.

As is clear from these results, obtained speedups (T1/T48) strongly depend on
the models; for some models, we obtain speedups above 30×, up to 36.8× for the
blocks.4 model.

See Figure 13.5 for a speedup graph of a selection of these models. This speedup
graph was obtained using list decision diagrams, which are discussed in [59] and are
beyond the scope of this chapter. The speedup graph suggests that most likely further
speedups would be obtained after 48 cores for the selected models.

13.6.3 Symbolic Bisimulation Minimisation

One of the main challenges for model checking is that the space and time require-
ments of model checking algorithms increase exponentially with the size of the
models. One technique that helps combat this challenge is called bisimulation mini-
mization. Given an input model, bisimulation minimization computes the smallest
equivalent model, also called the maximal bisimulation, under some notion of equiva-

538 Tom van Dijk and Jaco van de Pol

0

10

20

30

40

0 10 20 30 40 50
Workers

Sp
ee
du
p

Model

blocks.4

collision.5

exit.4

lann.6

lifts.8

mcs.5

rether.6

telephony.5

Fig. 13.5: Speedup graphs of several well-performing models. Each data point is an
average of at least five measurements

lence. This can significantly reduce the number of states. This technique is also used
to abstract models from internal behavior, when only observable behavior is relevant.

The maximal bisimulation of a model is typically computed using partition re-
finement. Starting with an initially coarse partition (e.g., all states are equivalent),
the partition is refined until states in each equivalence class can no longer be distin-
guished. The result is the maximal bisimulation with respect to the initial partition.
Blom et al. [8] introduced a signature-based method, which assigns states to equiva-
lence classes according to a characterizing signature. This method easily extends to
various types of bisimulation.

In [65, 67], we studied bisimulation minimization for labeled transition systems
(LTSs), continuous-time Markov chains (CTMCs) and interactive Markov chains
(IMCs), which combine the features of LTSs and CTMCs. These allow the analysis
of quantitative properties, e.g., performance and dependability. We implemented
strong bisimulation and branching bisimulation in the SIGREFMC tool. Strong
bisimulation preserves both internal behavior (τ-transitions) and observable behavior,
while branching bisimulation abstracts from internal behavior. The SIGREFMC
tool also connects to the LTSMIN tool described in Section 13.6.2, enabling the
minimization of models described with various input languages.

Bisimulation minimization is performed in two steps. The first step is computing
the maximal bisimulation, which is a partition computed using signature refinement.

13 Multi-core Decision Diagrams 539

SIGREF LTS models Signature refinement Quotient computation

Model States Blocks T1 T48 Sp. T1 T48 Sp.

kanban03 1024240 85356 10.09 0.88 11.52× 6.72 0.35 19.08×
kanban04 16020316 778485 148.15 11.37 13.03× 106.22 5.38 19.73×
kanban05 16772032 5033631 1284.86 73.57 17.47× 740.53 33.80 21.91×
SIGREF CTMC models Signature refinement Quotient computation

Model States Blocks T1 T48 Sp. T1 T48 Sp.

cycling-
4

431101 282943 26.72 2.60 10.29× 59.51 3.32 17.90×

cycling-
5

2326666 1424914 170.28 19.42 8.77× 294.15 13.48 21.83×

fgf 80616 38639 8.86 0.88 10.04× 7.42 0.73 10.20×
p2p-5-6 230 336 26.96 2.99 9.03× 10.25 1.41 7.29×
p2p-6-5 230 266 9.49 1.21 7.82× 3.67 0.55 6.71×
p2p-7-5 235 336 24.01 2.97 8.08× 9.26 1.19 7.79×
polling-
16

1572864 98304 118.50 10.18 11.64× 66.25 4.49 14.75×

polling-
17

3342336 196608 303.65 22.58 13.45× 161.74 10.02 16.14×

polling-
18

7077888 393216 705.22 49.81 14.16× 359.49 21.68 16.58×

LTSMIN LTS models Signature refinement Quotient computation

Model States Blocks T1 T48 Sp. T1 T48 Sp.

brp-3-4-
4

40,592 10,326 13.50 0.92 14.75× 2.45 0.14 17.53×

brp-4-4-
4

109,422 27,106 38.91 2.23 17.43× 9.84 0.52 18.93×

franklin-
3-3

41,401 883 24 1.24 19.40× 3.13 0.19 16.46×

franklin-
4-2

272,241 10,706 330.56 14.67 22.53× 28.04 1.43 19.63×

hesselink-
4

142,081,536 6,036 51.41 3.56 14.44× 7.01 1.21 5.78×

hesselink-
5

883,738,000 11,005 179.85 12.61 14.26× 22.32 3.64 6.14×

swp-2-4 2,589,056 69,555 267.46 11.33 23.60× 30.78 1.39 22.21×
swp-3-3 1,652,724 65,025 142.60 6.13 23.26× 24.89 1.11 22.39×
swp-4-3 7,429,632 264,708 630.73 25.92 24.34× 111.69 4.55 24.56×

Table 13.4: Computation time in seconds for partition refinement and quotient compu-
tation on various benchmarks provided with the original SIGREF tool and generated
by LTSMIN

540 Tom van Dijk and Jaco van de Pol

The second step is computing the quotient of the original model and the partition,
resulting in the minimized system.

See Table 13.4 for a selection of the benchmark results from [67]. We used
benchmark models provided with the original SIGREF tool by Wimmer et al. [70]
and from process algebra (in the MCRL2 language) prepared using LTSMIN. See
further [67] for a description of the models. The benchmarks were performed on a
48-core machine, consisting of four AMD OpteronTM 6168 processors with 12 cores
each and 128 GB of internal memory. Table 13.4 shows that the parallel speedup
varies with the model used, similarly to the results we obtained with symbolic
reachability in Table 13.3. We obtained speedups of up to 24× for both the signature
refinement step and the quotient computation step.

13.6.4 Probabilistic Model Checking

Sylvan has also been used as a symbolic back-end in the model checker ISCASMC,
a probabilistic model checker [30] written in Java. A recent study [60] compared
the performance of the BDD libraries CUDD, BuDDy, CacBDD, JDD, Sylvan and
BeeDeeDee when used as the symbolic back-end of ISCASMC and performing
symbolic reachability.

They summarize the overall runtimes by the following table [60]:

back-end time (s) back-end time (s)

sylvan-7 608 buddy 2156
cacbdd 1433 jdd 2439
cudd-bdd 1522 beedeedee 2598
sylvan-1 1838 cudd-mtbdd 2837

This result was produced with variant 2 of the nodes table in Sylvan. As the results
show, Sylvan is competitive with other BDD implementations when used sequentially
(with one worker) and benefits from parallelism (with seven workers).

13.7 Conclusions

This chapter has discussed the two basic ingredients to achieve scalable binary
decision diagrams in a multi-core shared-memory environment. The first ingredient
is a fine-grained work-stealing framework that provides parallel execution and load
balancing of the decision diagram operations. The second ingredient consists of the
concurrent, lock-free hash tables for the unique table and the operation cache.

We discussed Sylvan, a parallel implementation of decision diagrams. Sylvan
offers an easy-to-use, sequential interface like a traditional BDD package, but with a
parallel implementation of its operations. Thus, existing sequential algorithms that

13 Multi-core Decision Diagrams 541

depend on decision diagram operations benefit from the multi-core parallelization
offered by Sylvan. In addition, sequential algorithms can further profit from the
parallel work-stealing framework embedded in Sylvan by implementing parallel
tasks that call decision diagram operations in parallel. For example, a transition
system can be partitioned and the partitioned transition relations can be applied in
parallel via tree-like reductions.

The approach presented in this chapter is versatile. As shown with the different
types of decision diagrams implemented by Sylvan and used in the specific applica-
tions, the principles of parallel decision diagram operations can be applied to BDDs,
MTBDDs, list decision diagrams, multi-way decision diagrams, zero-suppressed
decision diagrams, etc. As decision diagrams are heavily used in many application
domains, we foresee that parallel decision diagram operations can be a practical
tool to bring parallelization to these domains. Future directions also include tackling
the challenges that other applications bring, such as efficient dynamic variable re-
ordering and tentative execution of decision diagram operations. Furthermore, the
development of parallel decision diagram operations for heterogeneous systems such
as clusters of multi-core computers [47, 48] and systems with many cores and highly
specialized hierarchies such as GPUs [68] offers additional challenges for BDD
operations that need to be addressed in the future.

References

[1] Magdy S. Abadir and Hassan K. Reghbati. Functional Test Generation for
Digital Circuits Described Using Binary Decision Diagrams. IEEE Trans.
Computers, 35(4):375–379, 1986.

[2] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Scheduling parallel
programs by work stealing with private deques. In PPOPP, pages 219–228.
ACM, 2013.

[3] S.B. Akers. Binary Decision Diagrams. IEEE Trans. Computers, C-27(6):509–
516, 6 1978.

[4] Prakash Arunachalam, Craig M. Chase, and Dinos Moundanos. Distributed
binary decision diagrams for verification of large circuit. In ICCD, pages
365–370, 1996.

[5] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico
Macii, Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and
their applications. In ICCAD 1993, pages 188–191, 1993.

[6] Debashis Bhattacharya, Prathima Agrawal, and Vishwani D. Agrawal. Test
Generation for Path Delay Faults Using Binary Decision Diagrams. IEEE Trans.
Computers, 44(3):434–447, 1995.

[7] F. Bianchi, Fulvio Corno, Maurizio Rebaudengo, Matteo Sonza Reorda, and
Roberto Ansaloni. Boolean function manipulation on a parallel system using
BDDs. In HPCN Europe, pages 916–928, 1997.

542 Tom van Dijk and Jaco van de Pol

[8] Stefan Blom and Simona Orzan. Distributed Branching Bisimulation Reduction
of State Spaces. ENTCS, 89(1):99–113, 2003.

[9] Stefan Blom, Jaco van de Pol, and Michael Weber. LTSmin: Distributed
and Symbolic Reachability. In CAV, volume 6174 of LNCS, pages 354–359.
Springer, 2010.

[10] Robert D. Blumofe. Scheduling multithreaded computations by work stealing.
In FOCS, pages 356–368. IEEE Computer Society, 1994.

[11] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded
Runtime System. J. Parallel Distrib. Comput., 37(1):55–69, 1996.

[12] Marco Bozzano, Alessandro Cimatti, and Francesco Tapparo. Symbolic fault
tree analysis for reactive systems. In ATVA 2007, volume 4762 of LNCS, pages
162–176. Springer, 2007.

[13] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementa-
tion of a BDD package. In DAC, pages 40–45, 1990.

[14] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Trans. Computers, C-35(8):677–691, 8 1986.

[15] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. Symbolic model checking: 10ˆ20 states and beyond. Inf. Comput.,
98(2):142–170, 1992.

[16] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill. Symbolic
model checking for sequential circuit verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 13(4):401–424, 4
1994.

[17] G.P. Cabodi, S. Gai, and M. Sonza Reorda. Boolean function manipulation on
massively parallel computers. In Proc. of 4th Symp. on Frontiers of Massively
Parallel Computation, pages 508–509. IEEE, 10 1992.

[18] Jer-Sheng Chen and P. Banerjee. Parallel construction algorithms for BDDs. In
ISCAS 1999, pages 318–322. IEEE, 1999.

[19] Ming-Ying Chung and Gianfranco Ciardo. Saturation NOW. In QEST, pages
272–281. IEEE Computer Society, 2004.

[20] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Saturation: An
Efficient Iteration Strategy for Symbolic State-Space Generation. In TACAS,
volume 2031 of LNCS, pages 328–342, 2001.

[21] Gianfranco Ciardo, Yang Zhao, and Xiaoqing Jin. Parallel symbolic state-space
exploration is difficult, but what is the alternative? In PDMC, pages 1–17, 2009.

[22] Edmund M. Clarke, Kenneth L. McMillan, Xudong Zhao, Masahiro Fujita, and
J. Yang. Spectral Transforms for Large Boolean Functions with Applications to
Technology Mapping. In DAC, pages 54–60, 1993.

[23] Jonathan Ezekiel, Gerald Lüttgen, and Gianfranco Ciardo. Parallelising sym-
bolic state-space generators. In CAV, volume 4590 of LNCS, pages 268–280,
2007.

[24] Karl-Filip Faxén. Wool–A work stealing library. SIGARCH Computer Archi-
tecture News, 36(5):93–100, 2008.

13 Multi-core Decision Diagrams 543

[25] Karl-Filip Faxén. Efficient work stealing for fine grained parallelism. In ICPP
2010, pages 313–322. IEEE Computer Society, 2010.

[26] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl
Tschantz. Verification and change-impact analysis of access-control policies.
In ICSE 2005, pages 196–205. ACM, 2005.

[27] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation
of the Cilk-5 Multithreaded Language. In PLDI, pages 212–223. ACM, 1998.

[28] S. Gai, M. Rebaudengo, and M. Sonza Reorda. An improved data parallel
algorithm for Boolean function manipulation using BDDs. In Proc. Euromicro
Workshop on Par. and Distrib. Processing, pages 33–39. IEEE, 1 1995.

[29] Orna Grumberg, Tamir Heyman, and Assaf Schuster. A work-efficient dis-
tributed algorithm for reachability analysis. Formal Methods in System Design,
29(2):157–175, 2006.

[30] Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and Lijun Zhang.
iscasmc: A web-based probabilistic model checker. In FM, volume 8442 of
LNCS, pages 312–317. Springer, 2014.

[31] Tamir Heyman, Danny Geist, Orna Grumberg, and Assaf Schuster. Achieving
Scalability in Parallel Reachability Analysis of Very Large Circuits. In Com-
puter Aided Verification, volume 1855 of Lecture Notes in Computer Science,
pages 20–35. Springer Berlin / Heidelberg, 2000.

[32] Masakazu Ishihata, Taisuke Sato, and Shin-ichi Minato. Compiling Bayesian
networks for parameter learning based on shared BDDs. In AI 2011, volume
7106 of Lecture Notes in Computer Science, pages 203–212. Springer, 2011.

[33] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and
Tom van Dijk. LTSmin: High-Performance Language-Independent Model
Checking. In TACAS 2015, volume 9035 of LNCS, pages 692–707. Springer,
2015.

[34] S. Kimura and E.M. Clarke. A parallel algorithm for constructing binary
decision diagrams. In Proc. of IC on Computer Design: VLSI in Computers
and Processors ICCD, pages 220–223, 9 1990.

[35] S. Kimura, T. Igaki, and H. Haneda. Parallel Binary Decision Diagram Manip-
ulation. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Science, E75-A(10):1255–62, 10 1992.

[36] Alfons Laarman, Jaco van de Pol, and Michael Weber. Boosting multi-core
reachability performance with shared hash tables. In FMCAD 2010, pages
247–255. IEEE, 2010.

[37] Alfons W. Laarman, Jaco van de Pol, and Michael Weber. Multi-Core LTSmin:
Marrying Modularity and Scalability. In NASA Formal Methods - Third In-
ternational Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011.
Proceedings, volume 6617 of LNCS, pages 506–511. Springer, 2011.

[38] Elsa Loekito and James Bailey. Fast mining of high dimensional expressive
contrast patterns using zero-suppressed binary decision diagrams. In SIGKDD
2006, pages 307–316. ACM, 2006.

544 Tom van Dijk and Jaco van de Pol

[39] Alberto Lovato, Damiano Macedonio, and Fausto Spoto. A Thread-Safe Library
for Binary Decision Diagrams. In SEFM, volume 8702 of LNCS, pages 35–49.
Springer, 2014.

[40] Sharad Malik, Albert R. Wang, Robert K. Brayton, and Alberto L. Sangiovanni-
Vincentelli. Logic verification using binary decision diagrams in a logic synthe-
sis environment. In ICCAD 1998, pages 6–9, 1988.

[41] Yusuke Matsunaga and Masahiro Fujita. Multi-level logic optimization using
binary decision diagrams. In ICCAD 1989, pages 556–559. IEEE, 1989.

[42] Jeroen Meijer, Gijs Kant, Stefan Blom, and Jaco van de Pol. Read, Write and
Copy Dependencies for Symbolic Model Checking. In Eran Yahav, editor, HVC,
volume 8855 of Lecture Notes in Computer Science, pages 204–219. Springer,
2014.

[43] Kim Milvang-Jensen and Alan J. Hu. BDDNOW: A parallel BDD package. In
FMCAD, pages 501–507, 1998.

[44] Shin-ichi Minato. Techniques of BDD/ZDD: Brief History and Recent Activity.
IEICE Transactions, 96-D(7):1419–1429, 2013.

[45] Shin-ichi Minato, Ken Satoh, and Taisuke Sato. Compiling Bayesian networks
by symbolic probability calculation based on zero-suppressed BDDs. In IJCAI
2007, pages 2550–2555, 2007.

[46] Hiroyuki Ochi, Nagisa Ishiura, and Shuzo Yajima. Breadth-first manipulation
of SBDD of Boolean functions for vector processing. In DAC, pages 413–416,
1991.

[47] Wytse Oortwijn. Distributed Symbolic Reachability Analysis. Master’s thesis,
University of Twente, Dept. of C.S., 2015.

[48] Wytse Oortwijn, Tom van Dijk, and Jaco van de Pol. Distributed Binary
Decision Diagrams for Symbolic Reachability. In SPIN, pages 21–30. ACM,
2017.

[49] Jörn Ossowski. JINC – A Multi-Threaded Library for Higher-Order Weighted
Decision Diagram Manipulation. PhD thesis, Rheinische Friedrich-Wilhelms-
Universität Bonn, 10 2010.

[50] Yegnashankar Parasuram, Edward P. Stabler, and Shiu-Kai Chin. Parallel
implementation of BDD algorithms using a distributed shared memory. In
HICSS (1), pages 16–25, 1994.

[51] Radek Pelánek. BEEM: benchmarks for explicit model checkers. In SPIN,
pages 263–267, Berlin, Heidelberg, 2007. Springer-Verlag.

[52] Karen A. Reay and John D. Andrews. A fault tree analysis strategy using binary
decision diagrams. Rel. Eng. & Sys. Safety, 78(1):45–56, 2002.

[53] Yuko Sakurai, Suguru Ueda, Atsushi Iwasaki, Shin-ichi Minato, and Makoto
Yokoo. A compact representation scheme of coalitional games based on multi-
terminal zero-suppressed binary decision diagrams. In PRIMA 2011, volume
7047 of Lecture Notes in Computer Science, pages 4–18. Springer, 2011.

[54] Jagesh V. Sanghavi, Rajeev K. Ranjan, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. High performance BDD package by exploiting mem-
ory hiercharchy. In DAC, pages 635–640, 1996.

13 Multi-core Decision Diagrams 545

[55] Mathias Soeken, Laura Tague, Gerhard W. Dueck, and Rolf Drechsler. Ancilla-
free synthesis of large reversible functions using binary decision diagrams. J.
Symb. Comput., 73:1–26, 2016.

[56] Fabio Somenzi. Efficient manipulation of decision diagrams. STTT, 3(2):171–
181, 2001.

[57] Fabio Somenzi. CUDD: CU decision diagram package release 3.0.0. http:
//vlsi.colorado.edu/~fabio/CUDD/, 2015.

[58] Tony Stornetta and Forrest Brewer. Implementation of an efficient parallel
BDD package. In DAC, pages 641–644, 1996.

[59] Tom van Dijk. Sylvan: Multi-core Decision Diagrams. PhD thesis, University
of Twente, 7 2016.

[60] Tom van Dijk, Ernst Moritz Hahn, David N. Jansen, Yong Li, Thomas Neele,
Mariëlle Stoelinga, Andrea Turrini, and Lijun Zhang. A Comparative Study of
BDD Packages for Probabilistic Symbolic Model Checking. In SETTA, volume
9409 of LNCS, pages 35–51. Springer, 2015.

[61] Tom van Dijk, Alfons Laarman, and Jaco van de Pol. Multi-core BDD opera-
tions for symbolic reachability. ENTCS, 296:127–143, 2013.

[62] Tom van Dijk, Alfons W. Laarman, and Jaco van de Pol. Multi-core and/or
Symbolic Model Checking. ECEASST, 53, 2012.

[63] Tom van Dijk and Jaco van de Pol. Lace: Non-blocking Split Deque for
Work-Stealing. In MuCoCoS, volume 8806 of LNCS, pages 206–217. Springer,
2014.

[64] Tom van Dijk and Jaco van de Pol. Sylvan: Multi-Core Decision Diagrams. In
TACAS, volume 9035 of LNCS, pages 677–691. Springer, 2015.

[65] Tom van Dijk and Jaco van de Pol. Multi-Core Symbolic Bisimulation Minimi-
sation. In TACAS, volume 9636 of LNCS, pages 332–348. Springer, 2016.

[66] Tom van Dijk and Jaco van de Pol. Sylvan: multi-core framework for decision
diagrams. International Journal on Software Tools for Technology Transfer,
19(6) pp 675–696, 2017.

[67] Tom van Dijk and Jaco van de Pol. Multi-core symbolic bisimulation minimi-
sation. International Journal on Software Tools for Technology Transfer, 2017.
Published online, August 2017.

[68] Miroslav N. Velev and Ping Gao. Efficient parallel GPU algorithms for BDD
manipulation. In ASP-DAC, pages 750–755. IEEE, 2014.

[69] David B. Wagner and Brad Calder. Leapfrogging: A portable technique for
implementing efficient futures. In PPOPP, pages 208–217. ACM, 1993.

[70] Ralf Wimmer, Marc Herbstritt, Holger Hermanns, Kelley Strampp, and Bernd
Becker. Sigref – A Symbolic Bisimulation Tool Box. In ATVA, volume 4218 of
LNCS, pages 477–492. Springer, 2006.

[71] Bwolen Yang and David R. O’Hallaron. Parallel breadth-first BDD construction.
In PPOPP, pages 145–156, 1997.

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

	13 Multi-core Decision Diagrams
	13.1 Introduction
	13.2 Preliminaries
	13.2.1 Boolean Logic and Notation
	13.2.2 Binary Decision Diagrams
	13.2.3 Multi-terminal Binary Decision Diagrams
	13.2.4 Algorithms on Decision Diagrams
	13.2.5 Parallelism
	13.2.6 Historical Perspective

	13.3 Parallel Decision Diagrams
	13.3.1 Work-Stealing
	13.3.2 Parallel Operations with Work-Stealing
	13.3.3 Conclusion

	13.4 Concurrent Data Structures
	13.4.1 Representation of Nodes
	13.4.2 Unique Table
	13.4.3 Computed Table

	13.5 Garbage Collection
	13.6 Empirical Results
	13.6.1 Symbolic Model Checking
	13.6.2 Symbolic On-the-Fly Reachability
	13.6.3 Symbolic Bisimulation Minimisation
	13.6.4 Probabilistic Model Checking

	13.7 Conclusions
	References

