1,684 research outputs found

    An efficient shooting algorithm for Evans function calculations in large systems

    Full text link
    In Evans function computations of the spectra of asymptotically constant-coefficient linear operators, a basic issue is the efficient and numerically stable computation of subspaces evolving according to the associated eigenvalue ODE. For small systems, a fast, shooting algorithm may be obtained by representing subspaces as single exterior products \cite{AS,Br.1,Br.2,BrZ,BDG}. For large systems, however, the dimension of the exterior-product space quickly becomes prohibitive, growing as (nk)\binom{n}{k}, where nn is the dimension of the system written as a first-order ODE and kk (typically ∼n/2\sim n/2) is the dimension of the subspace. We resolve this difficulty by the introduction of a simple polar coordinate algorithm representing ``pure'' (monomial) products as scalar multiples of orthonormal bases, for which the angular equation is a numerically optimized version of the continuous orthogonalization method of Drury--Davey \cite{Da,Dr} and the radial equation is evaluable by quadrature. Notably, the polar-coordinate method preserves the important property of analyticity with respect to parameters.Comment: 21 pp., two figure

    Domains of analyticity of Lindstedt expansions of KAM tori in dissipative perturbations of Hamiltonian systems

    Full text link
    Many problems in Physics are described by dynamical systems that are conformally symplectic (e.g., mechanical systems with a friction proportional to the velocity, variational problems with a small discount or thermostated systems). Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small dissipation, which is the object of the present study, is particularly interesting. We provide all details for maps, but we present also the modifications needed to obtain a direct proof for the case of differential equations. We consider a family of conformally symplectic maps fμ,ϵf_{\mu, \epsilon} defined on a 2d2d-dimensional symplectic manifold M\mathcal M with exact symplectic form Ω\Omega; we assume that fμ,ϵf_{\mu,\epsilon} satisfies fμ,ϵ∗Ω=λ(ϵ)Ωf_{\mu,\epsilon}^*\Omega=\lambda(\epsilon) \Omega. We assume that the family depends on a dd-dimensional parameter μ\mu (called drift) and also on a small scalar parameter ϵ\epsilon. Furthermore, we assume that the conformal factor λ\lambda depends on ϵ\epsilon, in such a way that for ϵ=0\epsilon=0 we have λ(0)=1\lambda(0)=1 (the symplectic case). We study the domains of analyticity in ϵ\epsilon near ϵ=0\epsilon=0 of perturbative expansions (Lindstedt series) of the parameterization of the quasi--periodic orbits of frequency ω\omega (assumed to be Diophantine) and of the parameter μ\mu. Notice that this is a singular perturbation, since any friction (no matter how small) reduces the set of quasi-periodic solutions in the system. We prove that the Lindstedt series are analytic in a domain in the complex ϵ\epsilon plane, which is obtained by taking from a ball centered at zero a sequence of smaller balls with center along smooth lines going through the origin. The radii of the excluded balls decrease faster than any power of the distance of the center to the origin

    A Dynamically Adaptive Sparse Grid Method for Quasi-Optimal Interpolation of Multidimensional Analytic Functions

    Full text link
    In this work we develop a dynamically adaptive sparse grids (SG) method for quasi-optimal interpolation of multidimensional analytic functions defined over a product of one dimensional bounded domains. The goal of such approach is to construct an interpolant in space that corresponds to the "best MM-terms" based on sharp a priori estimate of polynomial coefficients. In the past, SG methods have been successful in achieving this, with a traditional construction that relies on the solution to a Knapsack problem: only the most profitable hierarchical surpluses are added to the SG. However, this approach requires additional sharp estimates related to the size of the analytic region and the norm of the interpolation operator, i.e., the Lebesgue constant. Instead, we present an iterative SG procedure that adaptively refines an estimate of the region and accounts for the effects of the Lebesgue constant. Our approach does not require any a priori knowledge of the analyticity or operator norm, is easily generalized to both affine and non-affine analytic functions, and can be applied to sparse grids build from one dimensional rules with arbitrary growth of the number of nodes. In several numerical examples, we utilize our dynamically adaptive SG to interpolate quantities of interest related to the solutions of parametrized elliptic and hyperbolic PDEs, and compare the performance of our quasi-optimal interpolant to several alternative SG schemes

    Efficient numerical stability analysis of detonation waves in ZND

    Full text link
    As described in the classic works of Lee--Stewart and Short--Stewart, the numerical evaluation of linear stability of planar detonation waves is a computationally intensive problem of considerable interest in applications. Reexamining this problem from a modern numerical Evans function point of view, we derive a new algorithm for their stability analysis, related to a much older method of Erpenbeck, that, while equally simple and easy to implement as the standard method introduced by Lee--Stewart, appears to be potentially faster and more stable

    Conformal Maps to Multiply-Slit Domains and Applications

    Get PDF
    By exploiting conformal maps to vertically slit regions in the complex plane, a recently developed rational spectral method [Tee and Trefethen, 2006] is able to solve PDEs with interior layer-like behaviour using significantly fewer collocation points than traditional spectral methods. The conformal maps are chosen to 'enlarge the region of analyticity' in the solution: an idea which can be extended to other numerical methods based upon global polynomial interpolation. Here we show how such maps can be rapidly computed in both periodic and nonperiodic geometries, and apply them to some challenging differential equations

    Iterative structure of finite loop integrals

    Get PDF
    In this paper we develop further and refine the method of differential equations for computing Feynman integrals. In particular, we show that an additional iterative structure emerges for finite loop integrals. As a concrete non-trivial example we study planar master integrals of light-by-light scattering to three loops, and derive analytic results for all values of the Mandelstam variables ss and tt and the mass mm. We start with a recent proposal for defining a basis of loop integrals having uniform transcendental weight properties and use this approach to compute all planar two-loop master integrals in dimensional regularization. We then show how this approach can be further simplified when computing finite loop integrals. This allows us to discuss precisely the subset of integrals that are relevant to the problem. We find that this leads to a block triangular structure of the differential equations, where the blocks correspond to integrals of different weight. We explain how this block triangular form is found in an algorithmic way. Another advantage of working in four dimensions is that integrals of different loop orders are interconnected and can be seamlessly discussed within the same formalism. We use this method to compute all finite master integrals needed up to three loops. Finally, we remark that all integrals have simple Mandelstam representations.Comment: 26 pages plus appendices, 5 figure
    • …
    corecore