95 research outputs found

    FPGA Prototyping of A High Data Rate LTE Uplink Baseband Receiver

    Get PDF
    The Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) standard is becoming the appropriate choice to pave the way for the next generation wireless and cellular standards. While the popular OFDM technique has been adopted and implemented in previous standards and also in the LTE downlink, it suffers from high peak-to-average-power ratio (PAPR). High PAPR requires more sophisticated power amplifiers (PAs) in the handsets and would result in lower efficiency PAs. In order to combat such effects, the LTE uplink choice of transmission is the novel Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme which has lower PAPR due to its inherent signal structure. While reducing the PAPR, the SC-FDMA requires a more complicated detector structure in the base station for multi-antenna and multi-user scenarios. Since the multi-antenna and multi-user scenarios are critical parts of the LTE standard to deliver high performance and data rate, it is important to design novel architectures to ensure high reliability and data rate in the receiver. In this paper, we propose a flexible architecture of a high data rate LTE uplink receiver with multiple receive antennas and implemented a single FPGA prototype of this architecture. The architecture is verified on the WARPLab (a software defined radio platform based on Rice Wireless Open-access Research Platform) and tested in the real over-the-air indoor channel.NokiaNokia Siemens Networks (NSN)XilinxAzimuth SystemsNational Science Foundatio

    Energy Efficient VLSI Circuits for MIMO-WLAN

    Get PDF
    Mobile communication - anytime, anywhere access to data and communication services - has been continuously increasing since the operation of the first wireless communication link by Guglielmo Marconi. The demand for higher data rates, despite the limited bandwidth, led to the development of multiple-input multiple-output (MIMO) communication which is often combined with orthogonal frequency division multiplexing (OFDM). Together, these two techniques achieve a high bandwidth efficiency. Unfortunately, techniques such as MIMO-OFDM significantly increase the signal processing complexity of transceivers. While fast improvements in the integrated circuit (IC) technology enabled to implement more signal processing complexity per chip, large efforts had and have to be done for novel algorithms as well as for efficient very large scaled integration (VLSI) architectures in order to meet today's and tomorrow's requirements for mobile wireless communication systems. In this thesis, we will present architectures and VLSI implementations of complete physical (PHY) layer application specific integrated circuits (ASICs) under the constraints imposed by an industrial wireless communication standard. Contrary to many other publications, we do not elaborate individual components of a MIMO-OFDM communication system stand-alone, but in the context of the complete PHY layer ASIC. We will investigate the performance of several MIMO detectors and the corresponding preprocessing circuits, being integrated into the entire PHY layer ASIC, in terms of achievable error-rate, power consumption, and area requirement. Finally, we will assemble the results from the proposed PHY layer implementations in order to enhance the energy efficiency of a transceiver. To this end, we propose a cross-layer optimization of PHY layer and medium access control (MAC) layer

    Low-Power and Error-Resilient VLSI Circuits and Systems.

    Full text link
    Efficient low-power operation is critically important for the success of the next-generation signal processing applications. Device and supply voltage have been continuously scaled to meet a more constrained power envelope, but scaling has created resiliency challenges, including increasing timing faults and soft errors. Our research aims at designing low-power and robust circuits and systems for signal processing by drawing circuit, architecture, and algorithm approaches. To gain an insight into the system faults due to supply voltage reduction, we researched the two primary effects that determine the minimum supply voltage (VMIN) in Intel’s tri-gate CMOS technology, namely process variations and gate-dielectric soft breakdown. We determined that voltage scaling increases the timing window that sequential circuits are vulnerable. Thus, we proposed a new hold-time violation metric to define hold-time VMIN, which has been adopted as a new design standard. Device scaling increases soft errors which affect circuit reliability. Through extensive soft error characterization using two 65nm CMOS test chips, we studied the soft error mechanisms and its dependence on supply voltage and clock frequency. This study laid the foundation of the first 65nm DSP chip design for a NASA spaceflight project. To mitigate such random errors, we proposed a new confidence-driven architecture that effectively enhances the error resiliency of deeply scaled CMOS and post-CMOS circuits. Designing low-power resilient systems can effectively leverage application-specific algorithmic approaches. To explore design opportunities in the algorithmic domain, we demonstrate an application-specific detection and decoding processor for multiple-input multiple-output (MIMO) wireless communication. To enhance the receive error rate for a robust wireless communication, we designed a joint detection and decoding technique by enclosing detection and decoding in an iterative loop to enhance both interference cancellation and error reduction. A proof-of-concept chip design was fabricated for the next-generation 4x4 256QAM MIMO systems. Through algorithm-architecture optimizations and low-power circuit techniques, our design achieves significant improvements in throughput, energy efficiency and error rate, paving the way for future developments in this area.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110323/1/uchchen_1.pd

    Baseband Processing for 5G and Beyond: Algorithms, VLSI Architectures, and Co-design

    Get PDF
    In recent years the number of connected devices and the demand for high data-rates have been significantly increased. This enormous growth is more pronounced by the introduction of the Internet of things (IoT) in which several devices are interconnected to exchange data for various applications like smart homes and smart cities. Moreover, new applications such as eHealth, autonomous vehicles, and connected ambulances set new demands on the reliability, latency, and data-rate of wireless communication systems, pushing forward technology developments. Massive multiple-input multiple-output (MIMO) is a technology, which is employed in the 5G standard, offering the benefits to fulfill these requirements. In massive MIMO systems, base station (BS) is equipped with a very large number of antennas, serving several users equipments (UEs) simultaneously in the same time and frequency resource. The high spatial multiplexing in massive MIMO systems, improves the data rate, energy and spectral efficiencies as well as the link reliability of wireless communication systems. The link reliability can be further improved by employing channel coding technique. Spatially coupled serially concatenated codes (SC-SCCs) are promising channel coding schemes, which can meet the high-reliability demands of wireless communication systems beyond 5G (B5G). Given the close-to-capacity error correction performance and the potential to implement a high-throughput decoder, this class of code can be a good candidate for wireless systems B5G. In order to achieve the above-mentioned advantages, sophisticated algorithms are required, which impose challenges on the baseband signal processing. In case of massive MIMO systems, the processing is much more computationally intensive and the size of required memory to store channel data is increased significantly compared to conventional MIMO systems, which are due to the large size of the channel state information (CSI) matrix. In addition to the high computational complexity, meeting latency requirements is also crucial. Similarly, the decoding-performance gain of SC-SCCs also do come at the expense of increased implementation complexity. Moreover, selecting the proper choice of design parameters, decoding algorithm, and architecture will be challenging, since spatial coupling provides new degrees of freedom in code design, and therefore the design space becomes huge. The focus of this thesis is to perform co-optimization in different design levels to address the aforementioned challenges/requirements. To this end, we employ system-level characteristics to develop efficient algorithms and architectures for the following functional blocks of digital baseband processing. First, we present a fast Fourier transform (FFT), an inverse FFT (IFFT), and corresponding reordering scheme, which can significantly reduce the latency of orthogonal frequency-division multiplexing (OFDM) demodulation and modulation as well as the size of reordering memory. The corresponding VLSI architectures along with the application specific integrated circuit (ASIC) implementation results in a 28 nm CMOS technology are introduced. In case of a 2048-point FFT/IFFT, the proposed design leads to 42% reduction in the latency and size of reordering memory. Second, we propose a low-complexity massive MIMO detection scheme. The key idea is to exploit channel sparsity to reduce the size of CSI matrix and eventually perform linear detection followed by a non-linear post-processing in angular domain using the compressed CSI matrix. The VLSI architecture for a massive MIMO with 128 BS antennas and 16 UEs along with the synthesis results in a 28 nm technology are presented. As a result, the proposed scheme reduces the complexity and required memory by 35%–73% compared to traditional detectors while it has better detection performance. Finally, we perform a comprehensive design space exploration for the SC-SCCs to investigate the effect of different design parameters on decoding performance, latency, complexity, and hardware cost. Then, we develop different decoding algorithms for the SC-SCCs and discuss the associated decoding performance and complexity. Also, several high-level VLSI architectures along with the corresponding synthesis results in a 12 nm process are presented, and various design tradeoffs are provided for these decoding schemes

    An Iterative Soft Decision Based LR-Aided MIMO Detector

    Get PDF
    The demand for wireless and high-rate communication system is increasing gradually and multiple-input-multiple-output (MIMO) is one of the feasible solutions to accommodate the growing demand for its spatial multiplexing and diversity gain. However, with high number of antennas, the computational and hardware complexity of MIMO increases exponentially. This accumulating complexity is a paramount problem in MIMO detection system directly leading to large power consumption. Hence, the major focus of this dissertation is algorithmic and hardware development of MIMO decoder with reduced complexity for both real and complex domain, which can be a beneficial solution with power efficiency and high throughput. Both hard and soft domain MIMO detectors are considered. The use of lattice reduction (LR) algorithm and on-demand-child-expansion for the reduction of noise propagation and node calculation respectively are the two of the key features of our developed architecture, presented in this literature. The real domain iterative soft MIMO decoding algorithm, simulated for 4 × 4 MIMO with different modulation scheme, achieves 1.1 to 2.7 dB improvement over Lease Sphere Decoder (LSD) and more than 8x reduction in list size, K as well as complexity of the detector. Next, the iterative real domain K-Best decoder is expanded to the complex domain with new detection scheme. It attains 6.9 to 8.0 dB improvement over real domain K-Best decoder and 1.4 to 2.5 dB better performance over conventional complex decoder for 8 × 8 MIMO with 64 QAM modulation scheme. Besides K, a new adjustable parameter, Rlimit has been introduced in order to append re-configurability trading-off between complexity and performance. After that, a novel low-power hardware architecture of complex decoder is developed for 8 × 8 MIMO and 64 QAM modulation scheme. The total word length of only 16 bits has been adopted limiting the bit error rate (BER) degradation to 0.3 dB with K and Rlimit equal to 4. The proposed VLSI architecture is modeled in Verilog HDL using Xilinx and synthesized using Synopsys Design Vision in 45 nm CMOS technology. According to the synthesize result, it achieves 1090.8 Mbps throughput with power consumption of 580 mW and latency of 0.33 us. The maximum frequency the design proposed is 181.8 MHz. All of the proposed decoders mentioned above are bounded by the fixed K. Hence, an adaptive real domain K-Best decoder is further developed to achieve the similar performance with less K, thereby reducing the computational complexity of the decoder. It does not require accurate SNR measurement to perform the initial estimation of list size, K. Instead, the difference between the first two minimal distances is considered, which inherently eliminates complexity. In summary, a novel iterative K-Best detector for both real and complex domain with efficient VLSI design is proposed in this dissertation. The results from extensive simulation and VHDL with analysis using Synopsys tool are also presented for justification and validation of the proposed works

    An Iterative Soft Decision Based LR-Aided MIMO Detector

    Get PDF
    The demand for wireless and high-rate communication system is increasing gradually and multiple-input-multiple-output (MIMO) is one of the feasible solutions to accommodate the growing demand for its spatial multiplexing and diversity gain. However, with high number of antennas, the computational and hardware complexity of MIMO increases exponentially. This accumulating complexity is a paramount problem in MIMO detection system directly leading to large power consumption. Hence, the major focus of this dissertation is algorithmic and hardware development of MIMO decoder with reduced complexity for both real and complex domain, which can be a beneficial solution with power efficiency and high throughput. Both hard and soft domain MIMO detectors are considered. The use of lattice reduction (LR) algorithm and on-demand-child-expansion for the reduction of noise propagation and node calculation respectively are the two of the key features of our developed architecture, presented in this literature. The real domain iterative soft MIMO decoding algorithm, simulated for 4 × 4 MIMO with different modulation scheme, achieves 1.1 to 2.7 dB improvement over Lease Sphere Decoder (LSD) and more than 8x reduction in list size, K as well as complexity of the detector. Next, the iterative real domain K-Best decoder is expanded to the complex domain with new detection scheme. It attains 6.9 to 8.0 dB improvement over real domain K-Best decoder and 1.4 to 2.5 dB better performance over conventional complex decoder for 8 × 8 MIMO with 64 QAM modulation scheme. Besides K, a new adjustable parameter, Rlimit has been introduced in order to append re-configurability trading-off between complexity and performance. After that, a novel low-power hardware architecture of complex decoder is developed for 8 × 8 MIMO and 64 QAM modulation scheme. The total word length of only 16 bits has been adopted limiting the bit error rate (BER) degradation to 0.3 dB with K and Rlimit equal to 4. The proposed VLSI architecture is modeled in Verilog HDL using Xilinx and synthesized using Synopsys Design Vision in 45 nm CMOS technology. According to the synthesize result, it achieves 1090.8 Mbps throughput with power consumption of 580 mW and latency of 0.33 us. The maximum frequency the design proposed is 181.8 MHz. All of the proposed decoders mentioned above are bounded by the fixed K. Hence, an adaptive real domain K-Best decoder is further developed to achieve the similar performance with less K, thereby reducing the computational complexity of the decoder. It does not require accurate SNR measurement to perform the initial estimation of list size, K. Instead, the difference between the first two minimal distances is considered, which inherently eliminates complexity. In summary, a novel iterative K-Best detector for both real and complex domain with efficient VLSI design is proposed in this dissertation. The results from extensive simulation and VHDL with analysis using Synopsys tool are also presented for justification and validation of the proposed works
    corecore