783 research outputs found

    Server Structure Proposal and Automatic Verification Technology on IaaS Cloud of Plural Type Servers

    Get PDF
    In this paper, we propose a server structure proposal and automatic performance verification technology which proposes and verifies an appropriate server structure on Infrastructure as a Service (IaaS) cloud with baremetal servers, container based virtual servers and virtual machines. Recently, cloud services have been progressed and providers provide not only virtual machines but also baremetal servers and container based virtual servers. However, users need to design an appropriate server structure for their requirements based on 3 types quantitative performances and users need much technical knowledge to optimize their system performances. Therefore, we study a technology which satisfies users' performance requirements on these 3 types IaaS cloud. Firstly, we measure performances of a baremetal server, Docker containers, KVM (Kernel based Virtual Machine) virtual machines on OpenStack with virtual server number changing. Secondly, we propose a server structure proposal technology based on the measured quantitative data. A server structure proposal technology receives an abstract template of OpenStack Heat and function/performance requirements and then creates a concrete template with server specification information. Thirdly, we propose an automatic performance verification technology which executes necessary performance tests automatically on provisioned user environments according to the template.Comment: Evaluations of server structure proposal were insufficient in section

    Design and implementation of unified communications as a service based on the OpenStack cloud environment

    Get PDF
    Cloud Computing, based on early virtual computer concepts and technologies, is now itself a maturing technology in the marketplace and it has revolutionized the IT industry, being the powerful platform that many businesses are choosing to migrate their in-premises IT services onto. Cloud solution has the potential to reduce the capital and operational expenses associated with deploying IT services on their own. In this study, we have implemented our own private cloud solution, infrastructure as a service (IaaS), using the OpenStack platform with high availability and a dynamic resource allocation mechanism. Besides, we have hosted unified communication as a service (UCaaS) in the underlying IaaS and successfully tested voice over IP (VoIP), video conferencing, voice mail and instant messaging (IM) with clients located at the remote site. The proposed solution has been developed in order to give advice to bussinesses that want to build their own cloud environment, IaaS and host cloud services and applicatons in the cloud. This paper also aims at providing an alternate option for proprietary cloud solutions for service providers to consider

    CloudBench: an integrated evaluation of VM placement algorithms in clouds

    Get PDF
    A complex and important task in the cloud resource management is the efficient allocation of virtual machines (VMs), or containers, in physical machines (PMs). The evaluation of VM placement techniques in real-world clouds can be tedious, complex and time-consuming. This situation has motivated an increasing use of cloud simulators that facilitate this type of evaluations. However, most of the reported VM placement techniques based on simulations have been evaluated taking into account one specific cloud resource (e.g., CPU), whereas values often unrealistic are assumed for other resources (e.g., RAM, awaiting times, application workloads, etc.). This situation generates uncertainty, discouraging their implementations in real-world clouds. This paper introduces CloudBench, a methodology to facilitate the evaluation and deployment of VM placement strategies in private clouds. CloudBench considers the integration of a cloud simulator with a real-world private cloud. Two main tools were developed to support this methodology, a specialized multi-resource cloud simulator (CloudBalanSim), which is in charge of evaluating VM placement techniques, and a distributed resource manager (Balancer), which deploys and tests in a real-world private cloud the best VM placement configurations that satisfied user requirements defined in the simulator. Both tools generate feedback information, from the evaluation scenarios and their obtained results, which is used as a learning asset to carry out intelligent and faster evaluations. The experiments implemented with the CloudBench methodology showed encouraging results as a new strategy to evaluate and deploy VM placement algorithms in the cloud.This work was partially funded by the Spanish Ministry of Economy, Industry and Competitiveness under the Grant TIN2016-79637-P “Towards Unifcation of HPC and Big Data Paradigms” and by the Mexican Council of Science and Technology (CONACYT) through a Ph.D. Grant (No. 212677)

    Server Structure Proposal and Automatic Verification Technology on IAAS Cloud of Plural Type Servers

    Get PDF
    In this paper, we propose a server structure proposal and automatic performance verification technology which proposes and verifies an appropriate server structure on Infrastructure as a Service (IaaS) cloud with bare metal servers, container based virtual servers and virtual machines. Recently, cloud services have been progressed and providers provide not only virtual machines but also new metal servers and container based virtual servers. However, users need to design an appropriate server structure for their requirements based on 3 types quantitative performances and users need much technical knowledge to optimize their system performances. Therefore, we study a technology which satisfies users' performance requirements on these 3 types IaaS cloud. Firstly, we measure performances of a bare metal server, Docker containers, KVM (Kernel based Virtual Machine) virtual machines on OpenStack with virtual server number changing. Secondly, we propose a server structure proposal technology based on the measured quantitative data. A server structure proposal technology receives an abstract template of OpenStack Heat and function / performance requirements and then creates a concrete template with server specification information. Thirdly, we propose an automatic performance verification technology which executes necessary performance tests automatically on provisioned user environments according to the template

    Technical Report on Deploying a highly secured OpenStack Cloud Infrastructure using BradStack as a Case Study

    Full text link
    Cloud computing has emerged as a popular paradigm and an attractive model for providing a reliable distributed computing model.it is increasing attracting huge attention both in academic research and industrial initiatives. Cloud deployments are paramount for institution and organizations of all scales. The availability of a flexible, free open source cloud platform designed with no propriety software and the ability of its integration with legacy systems and third-party applications are fundamental. Open stack is a free and opensource software released under the terms of Apache license with a fragmented and distributed architecture making it highly flexible. This project was initiated and aimed at designing a secured cloud infrastructure called BradStack, which is built on OpenStack in the Computing Laboratory at the University of Bradford. In this report, we present and discuss the steps required in deploying a secured BradStack Multi-node cloud infrastructure and conducting Penetration testing on OpenStack Services to validate the effectiveness of the security controls on the BradStack platform. This report serves as a practical guideline, focusing on security and practical infrastructure related issues. It also serves as a reference for institutions looking at the possibilities of implementing a secured cloud solution.Comment: 38 pages, 19 figures

    Towards Elastic Virtual Machine Placement in Overbooked OpenStack Clouds under Uncertainty

    Get PDF
    Cloud computing datacenters currently provide millions of virtual machines in highly dynamic Infrastructure as a Service (IaaS) markets. As a first step on implementing algorithms previously proposed by the authors for Virtual Machine Placement (VMP) in a real- world IaaS middleware, this work presents an experimental comparison of these algorithms against current algorithms considered for solving VMP problems in OpenStack. Several experiments considering scenario- based simulations for uncertainty modelling demonstrate that the proposed algorithms present promising results for its implementation towards real-world operations. Next research steps are also summarized.Facultad de Informátic
    • …
    corecore