4 research outputs found

    Nonmonotonic Behavior Demonstrated by Stable

    Get PDF
    Nonmonotonic reasoning is a critical feature that robust reasoning systems must possess. Another important feature that robust reasoning systems must possess is the ability to reason about collections of objects (i.e., sets.) Logic programming presents us with a very powerful paradigm within which to represent and reason about knowledge. Developments in this field over recent years allow us to reason nonmonotonically, and allow us to reason about sets. Of the semantics introduced over recent years to allow logic programs to reason about sets, Stable{} is the newest and most expressive (i.e., comprehensive) approach to date. This paper examines the nonmonotonicity of Stable{}

    Set Unification

    Full text link
    The unification problem in algebras capable of describing sets has been tackled, directly or indirectly, by many researchers and it finds important applications in various research areas--e.g., deductive databases, theorem proving, static analysis, rapid software prototyping. The various solutions proposed are spread across a large literature. In this paper we provide a uniform presentation of unification of sets, formalizing it at the level of set theory. We address the problem of deciding existence of solutions at an abstract level. This provides also the ability to classify different types of set unification problems. Unification algorithms are uniformly proposed to solve the unification problem in each of such classes. The algorithms presented are partly drawn from the literature--and properly revisited and analyzed--and partly novel proposals. In particular, we present a new goal-driven algorithm for general ACI1 unification and a new simpler algorithm for general (Ab)(Cl) unification.Comment: 58 pages, 9 figures, 1 table. To appear in Theory and Practice of Logic Programming (TPLP

    Theory of partial-order programming

    Get PDF
    This paper shows the use of partial-order program clauses and lattice domains for declarative programming. This paradigm is particularly useful for expressing concise solutions to problems from graph theory, program analysis, and database querying. These applications are characterized by a need to solve circular constraints and perform aggregate operations, a capability that is very clearly and efficiently provided by partial-order clauses. We present a novel approach to their declarative and operational semantics, as well as the correctness of the operational semantics. The declarative semantics is model-theoretic in nature, but the least model for any function is not the classical intersection of all models, but the greatest lower bound/least upper bound of the respective terms defined for this function in the different models. The operational semantics combines top-down goal reduction with memo-tables. In the partial-order programming framework, however, memoization is primarily needed in order to detect circular circular function calls. In general we need more than simple memoization when functions are defined circularly in terms of one another through monotonic functions. In such cases, we accumulate a set of functional-constraint and solve them by general fixed-point-finding procedure. In order to prove the correctness of memoization, a straightforward induction on the length of the derivation will not suffice because of the presence of the memo-table. However, since the entries in the table grow monotonically, we identify a suitable table invariant that captures the correctness of the derivation. The partial-order programming paradigm has been implemented and all examples shown in this paper have been tested using this implementation
    corecore