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Abstract 

This paper shows the use of partial-order program clauses and lattice domains for declarative 
programming. This paradigm is particularly useful for expressing concise solutions to problems 
from graph theory, program analysis, and database querying. These applications are characterized 
by a need to solve circular constraints and perform aggregate operations, a capability that is very 
clearly and efficiently provided by partial-order clauses. We present a novel approach to their 
declarative and operational semantics, as well as the correctness of the operational semantics. 
The declarative semantics is model-theoretic in nature, but the least model for any function is 
not the classical intersection of all models, but the greatest lower bound/least upper bound of 
the respective terms delined for this function in the different models. The operational semantics 
combines top-down goal reduction with memo-tables. In the partial-order programming frame- 
work, however, memoization is primarily needed in order to detect circular circular function 
calls. In general we need more than simple memoization when functions are defined circularly 
in terms of one another through monotonic functions. In such cases, we accumulate a set of 
functional-constraints and solve them by general fixed-point-finding procedure. In order to prove 
the correctness of memoization, a straightforward induction on the length of the derivation will 
not suffice because of the presence of the memo-table. However, since the entries in the table 
grow monotonically, we identify a suitable table invariant that captures the correctness of the 
derivation. The partial-order programming paradigm has been implemented and all examples 
shown in this paper have been tested using this implementation. @ 1999 Elsevier Science B.V. 
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1. Introduction 

Equational program clauses and equational reasoning lie at the heart of functional 

programming, and the development of modem fimctional languages (ML, Miranda, 

Haskell, etc.) has been strongly influenced by these principles. In this paper, we de- 

scribe a functional language whose principal building blocks are partial-order program 

clauses and lattice data types. The use of partial orders and lattices in a functional 

language should not be surprising, since these concepts are fundamental to their seman- 

tics. The motivation for our work, however, is more practical in nature: We show that 

partial-order clauses and lattices help obtain clear, concise, and efficient formulations 

of problems requiring the ability to take transitive closures, solve circular constraints, 

and perform aggregate operations. 

There are two basic forms of a partial-order clause: 

f (terms) 2 expression 

f (terms) d expression 

Since these clauses are used to define functions, we require that each variable occurring 

in expression should also occur in terms. Terms are made up of constants, variables, 

and data constructors, while expressions are in addition made up of user-defined func- 

tions, i.e., those that appear at the head of the left-hand sides of partial-order clauses. 

Informally, the declarative meaning of a partial-order clause is that, for all its ground 

instantiations (i.e., replacing variables by ground terms), the function f applied to ar- 

gument terms is > (respectively, <) the ground term denoted by the expression on 

the right-hand side. In general, multiple partial-order clauses may be used in defining 

some function f: We define the meaning of a ground expression Aterms) to be equal 

to the least-upper bound (respectively, greatest-lower bound) of the resulting terms 

defined by the different partial-order clauses for J In practice, the lattice domains 

that commonly occur in applications are sets (under the subset ordering) and numbers 

(under the numeric ordering). In the former case, the Zub and glb operations are set 

union and intersection, respectively; and in the latter case, these operations are numeric 

greater-than and less-than respectively. All these operations can be implemented quite 

efficiently, as we have shown in our recent work [21]. 

We show that partial-order clauses help render clear and concise formulations to 

problems involving aggregate operations and recursion in database querying. This has 

been a topic of considerable interest in the literature recently [ 14,26,27,29]. An ag- 

gregate operation is a function that maps a set to some value, e.g., the maximum or 

minimum in the set, the cardinality of this set, the summation of all its members, etc. 

In considering the problems with various semantic approaches, Van Gelder [29] notes 

that, for many problems in which the use of aggregates has been proposed, the concept 

of subset is what is really necessary. Our proposed paradigm provides a natural and 

efficient realization of the concept of monotonic aggregation [26]. The fact that ag- 

gregate operations are functions rather than predicates suggests that a query language 



A4. Osorio et al. IScience of Computer Programming 34 (1999) 207-238 209 

supporting functions would be a natural framework for expressing aggregate opera- 
tions. Such an approach also permits a more natural means of stating monotonicity 
requirements (on aggregate operations). In order to couple an extensional database of 
relations 2 with partial-order clauses, we introduce the class of conditional partial-order 
clauses: 

f (terms) 2 expression : - condition 

f (terms) d expression : - condition 

where each variable in expression occurs either in terms or in condition, and condition 
is a conjunction of literals, each of which may be of the form p(tems), Tp(terms), 
or f(terms) = term, where p is an extensional database predicate. The semantics of the 
resulting programs are a straightforward generalization of those of unconditional partial- 
order clauses. In this setting, we show how various examples recently discussed in the 
deductive database literature can be clearly and concisely formulated. The resulting 
language may be thought of as a functional query language. 

The main technical results of this paper are the declarative and operational semantics 
of partial-order programs, especially the correctness of the latter with respect to the for- 
mer. The declarative semantics is model-theoretic in nature, and follows the intuitions 
from fixed-point theory [17, 181: a function definition has a well-defined semantics if it 
makes use of monotonic functions with respect to the appropriate partial-orders. How- 
ever, the requirement of using only monotonic functions is too severe, and therefore 
we seek a more liberal condition for a well-defined semantics. We show that a pro- 
gram has a unique least model if we can stratify, or partition, all program clauses into 
several levels such that all function calls at any given level depend upon others at the 
same level through monotonic functions, but may depend upon calls at lower levels 
through non-monotonic functions. In contrast with equational programs, for partial-order 
programs the least model must be obtained not by a classical intersection of models 
(i.e., the classical least fixed point), but by taking the glb of the denoted terms in the 
different models for some ground functional atom Aterms). 

In order to support this new notion of a least model, we develop an operational se- 
mantics that combines top-down goal reduction with memo-tables. Memo-tables have 
been used in traditional functional languages (or equational programs) to detect dy- 
namic common subexpressions [20]. In the partial-order programming framework, how- 
ever, memoization is primarily needed in order to detect circular constraints, or circular 
function calls. In general, we need more than simple memoization when functions are 
defined circularly in terms of one another through monotonic functions. In such cases, 
we need to accumulate a set of functional-constraints and solve them by an iterative 
procedure for computing their least/greatest fixed-point. 

2 The term ‘extensional database of relations’ means ‘a database of relations in which each relation is 

defined explicitly by all the tuples for which the relation holds’. This is the usual meaning of a relation in 

relational-database terminology. 
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In order to prove the correctness of operational semantics, we first note that a 

straightforward induction on the length of the derivation will not work because of 

the possibility of cyclic function calls - an inductive proof requires that a function call 

be reducible to strictly “smaller” calls according to the reduction relation. As noted 

above, we detect cyclic calls by the use of a memo-table. Since the entries in the table 

grow monotonically, we can identify a suitable table invariant that captures the cor- 

rectness of the derivation. In order to bridge the gap between the operational semantics 

and the model-theoretic semantics, we provide a constructive characterization of the 

declarative semantics in terms of the notion of a dependency graph of a function call 

f(terms). Since the declarative semantics interprets all functions as total functions, our 

operational semantics is incomplete in a technical sense. However, the operational and 

declarative semantics coincide exactly for terminating partial-order programs. 

Finally, we note that partial-order clauses are a generalization and an extension of the 

concept of subset cZauses described in our previous papers [ 1 l-131. The significance 

of generalizing subset clauses to partial-order clauses is that it provides a simple and 

efficient way of programming aggregate operations. In a recent paper [23], we showed 

how to translate partial-order clauses into normal program clauses [ 171 whose meaning 

is formalized using an extended well-founded semantics [5]. This paper considerably 

extends our previous papers by providing a complete treatment of the declarative and 

procedural semantics, including correctness proofs, and also treats monotonic aggrega- 

tion and monotonic memo-tables. 

The rest of this paper is organized as follows: Section 2 gives the syntax of terms 

and expressions, and explains using examples the informal meaning of partial-order 

clauses; Section 3 gives the declarative semantics of partial-order clauses, and Sec- 

tion 4 presents their operational semantics and correctness results; Section 5 introduces 

conditional partial-order clauses and shows their use for defining aggregate operations 

in databases; finally, Section 6 presents conclusions and comparisons with other related 

work. We assume familiarity with basic concepts in the semantics of logic programs. 

A good introductory treatment of the relevant concepts can be found in the text by 

Lloyd [17]. 

2. Partial-order clauses: an informal introduction 

2.1. Syntax and informal semantics 

We first discuss unconditional partial-order clauses, which have the form 

f (terms) 2 expression 

f (terms) d expression 

where each variable in expression also occurs in terms. (We discuss conditional partial- 

order clauses in Section 5.) The syntax of terms and expression is given 
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below: 

term : : = variable 1 constant\ c( terms) 
terms : : = term 1 term , terms 
expression : : = term 1 c(exprs) If(exprs) 
exprs : : = expression I expression , exprs 

Our lexical convention in this paper is to begin constants with lowercase letters and 

variables with uppercase letters. The symbol c stands for a constructor symbol whereas 

f stands for a non-constructor function symbol, also called user-defined function sym- 

bol. Terms are built up from constructors and stand for data objects of the language. 

A ground term is a term that does not contain any variables. The constructors in this 

language framework may be constrained by an equational theory, a special case be- 

ing set constructors described below. For such constructors, we require that matching 
a ground term against a pattern (i.e., non-ground term) produces a finite number of 

matches. 

We only consider complete lattices of finite terms in our language framework. Of 

special interest to us is the complete lattice of f’inite sets under the partial orderings 

subset and superset: union and intersection stand for the lub and glb, respectively, and 

the empty set (0) is the least element. In order to meet the requirements of a complete 

lattice, a special element T is introduced as the greatest element. We use the notation 

{X\T} to match a set S such that X E S and T = S - {X}, i.e., the set S with X removed. 

For example, matching {a, b , c} against the pattern {X\T} yields three different substi- 

tutions: {Xca, T+{b, c}}, {X+b, T+{a, c}}, and (X+-c, T+--{a, b}}. When 

used on the left-hand sides of program clauses, {X\T} allows one to decompose a set 

into strictly smaller sets. 

Before presenting some examples, we informally describe the operational semantics 

of partial-order clauses, as it will provide the reader some intuition about the language 

and also help appreciate the formal semantics to be given in Section 3. First, it should 

be remembered that partial-order clauses essentially constitute a functional programming 

paradigm, and hence all functions will be called with ground terms as arguments. 

We will also use the term query to refer to the top-level function call, and its syntax is 

f (ground-terms). 

In the general case, multiple partial-order clauses will be used to define a function. 

Moreover, because of the presence of constructors with equational theories on the left- 

hand sides of program clauses, there can be multiple matches of a function call against 

the left-hand side of any one clause. Thus, when multiple partial-order clauses define 

a function f, all matches of function call f(terms) against the left-hand sides of all 

clauses defining f will be used in instantiating the corresponding right-hand side ex- 

pressions; and, depending upon whether the partial-order clauses are 3 or <, the lub 
or the glb, respectively, of all the resulting terms is taken as the result. In case none 

of the clauses match the call, the result will respectively be l_ or T of the lattice. 

We refer to this as the I-as-failure (or T-as-failure) assumption. 
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We assume that any one function f is defined either with 2 or d clauses, but not 

both. The reason for this restriction is that mixing both types of clauses in one function 

definition can result in inconsistency. For example, consider the trivial program: 

f(X)>T 

f(X)dl 

for any non-trivial lattice domain where T and J_ are distinct elements, and are re- 

spectively the greatest and least elements of the lattice. Clearly, it is impossible to 

provide an interpretation for f (XI satisfying the above clauses. With this restriction, 

every partial-order program is consistent, i.e., has a model (as shown in Section 3). 

However, this restriction does not guarantee that every program has a well-defined, 

unique model. To achieve this desired property, we need to place the semantic re- 

quirement that circularity in function definitions should occur via monotonic functions. 

We illustrate this point in Example 2.5 and elaborate further in Section 3. 

2.2. Examples 

Example 2.1. The definition below shows a simple use of multiple partial-order clauses 

to define the lub and glb of two elements: 

lub(X,Y) >X glb(X,Y) <X 

lub(X,Y) 2Y glb(X,Y) dY 

Example 2.2. The definition of set-intersection shows how the use of set patterns on 

the left-hand sides of partial-order clauses can be used to perform iteration over sets: 

intersect ({X \ _}, {X \ _}I > {X) 

This function works as follows: For a function call intersect ({ 1, 2, 3)) { 2, 3, 4))) 

we have the following two assertions: intersect ({ I, 2,3}, {2,3,4}) B {2}, and 

intersect({l,2,3},{2,3,4}) 2 (3). Since the lub of (2) and (3) is {2,3}, we 

obtain intersect ({ 1, 2,3}, {2,3,4}) = {2,3}. Note that, if any of the argument 

sets is {}, the resulting set will also be {}. 

Example 2.3. The use of remainder sets in set-matching is illustrated by the following 

function definition, which takes as input a collection of propositional clauses, i.e., a 

set of set of literals, and returns the set of all resolvents 

resolvents({{X\Sl}, {not(X)\S2}\_}) B (lub(S1, S2)) 

Note that {A, B\_} is an abbreviation for {A\{B\_}}, and not is a constructor. This 

example further illustrates the power and conciseness afforded by set-patterns. 

We refer the reader to [lo] for more examples illustrating the use of set pat- 

terns and partial-order clauses. This reference also discusses efficient implementation 
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techniques for set patterns in terms of instructions that are closely related to the Warren 

Abstract Machine for Prolog [30]. 

We now present two examples to illustrate how circular function calls arise, and 

also briefly describe how they are handled in our intended operational semantics. 

Example 2.4 (Reach). The definition of transitive-closure operations is a natural use 

of partial-order clauses. Consider the function reach below which takes a set of nodes 

as input and finds the set of reachable nodes from this set (we re-formulate this example 

in Section 5 using an edge predicate). 

reach(S) > S 

reach({X\_}) > reach(edge(X)) 

edge(l) 2 (2) 

edge(2) > (1) 

Notice that the top-level query reach({ I}) will result in the call reach({2}), which 

in turn will result in a circular call reach({ 1)). We detect this loop by a memo-table, 
and return the empty set as a tentative answer (first approximation) for the circular call. 

Doing so will result in the set { 1, 2) as the tentative answer to the top-level query 

reach ({ 1)). Now, we re-evaluate the circular call on reach({ 1)) with { 1, 2) as the 

revised tentative answer (next approximation). This results in the same set { 1, 2) as 

the new answer to the top-level query. Thus, a fixed-point is reached and we declare 

{ 1,2} as the answer to the query. 

It may be noted that the above problem can be solved without having to incur 

circular calls: this is possible by keeping a set of nodes visited and consulting this 

set before making subsequent calls. However, this technique will become less feasible 

to implement in the next example, which requires nontrivial use of memoization and 

successive approximations. 

Example 2.5 (Data-Jtow analysis). Partial-order clauses can be used for carrying out 

sophisticated flow-analysis computations, as illustrated by the following program which 

computes the reaching dejnitions and busy expressions in a program flow graph. This 

information is computed by a compiler during its optimization phase [2]. The example 

also shows the use of monotonic functions. 

reach-out (B) 3 reach-in (pred (B) > - kill (B) 

reach-out(B) >, gen(B) 

reach_in({B\_}) > reach-out(B) 

busy-out(B) Q busy_in(succ(B) 1 - def (B) 

busy-out (B) < use(B) 

busy_in({B\_}) <busy-out(B) 

In the above program, kill(B), gen(B), pred(B), def (B), use(B), and succ(B) are 

predefined set-valued functions specifying the relevant information for a given program 
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flow graph and basic block B. The set-difference operator (-) is monotonic in its first 

argument, and hence its use in the bodies of the functions reach-out and busy-out 

is legal. Because the reach-in and reach-out functions are defined circularly (as are 

busy-in and busy-out), memoization is needed to avoid the infinite loop that could 

result when the underlying program flow-graph has cycles. 

It may be noted that when montonic functions are absent in the program definitions 

(as in the reach example), the final answer can be obtained without the having to 

compute successive approximations - the first tentative answer to the top-level query 

will be the correct answer. However, in the presence of monotonic functions, more 

than one iteration would be required in general. 

3. Declarative semantics 

In this section we first present a model-theoretic semantics for partial-order clauses 

and then provide a constructive characterization of this semantics. For simplicity of 

presentation, we consider only > clauses in this section; the treatment of 6 clauses 

is symmetric. As noted before, we do not consider the definition of a function using a 

combination of < and > clauses. As a consequence, the semantics of 3 clauses can 

be given in a modular way, without any possibility of interference from < clauses, 

and vice versa. We also consider functions with only one argument but our results 

carry out straightfonvard to the general case. Note, however, that this argument can 

be a general term (which could simulate a multi-argument function using a list), and 

hence there is no loss of generality by this assumption. 

In preparation for the semantics, we use the flattened form for all clauses and goals. 

The idea of flattening has been mentioned in several places in the literature [g-10, 151. 

We follow the definition given in [9], and we illustrate it by a simple example. 

Example 3.1. Assuming that f, g, h, and k are user-defined functions and the remain- 

ing function symbols are constructors, the flattened form of a clause 

f(c(X,Y)) >cl(c2(g(c3(X)), k(dl(h(d2(Y,l)))))) 

is as follows: 

f(c(X,Y))>cl(c2(Yl, Y3)) :- g(c3(X))=Yl, 

h(d2(Y,l)) =Y2, k(dl(Y2)) =Y3. 

In the above flattened clause, we follow Prolog convention and use the notation : - for 

‘if’ and commas for ‘and’. All variables are to understood to be universally quantified 

at the head of the clause, as is customary for definite clauses. 

The general form of a flattened clause is 

Head : - Body 
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where Head is f(t) 2 u, and t and u are terms, and Body is of the form El,. . . , E,. 

Each Ei is fi(ti) = yi, where each fi is a user-defined fi_mction symbol, each yi is 

a new variable not present in Head, and each ti is a term that is equivalent to the 

argument of f i in the original, unflattened program clause. Each formula f i(ti) = y; in 

Body is called a basic goal, and a sequence of basic goals is called a goal sequence. 
The order in which the basic goals are listed on the right-hand side of a flattened 

clause is the leftmost-innermost order for reducing expressions [18]. 

Finally, note that the flattened form of a query is similar to that of Body. In order 

to capture the i-as-failure assumption, we assume that for every function symbol 

f in P, the program is augmented by the clause: f (X1 3 1. 

3.1. Model-theoretic semantics 

We will work with Herbrand interpretations, where the Herbrand Universe of a 

program P consists only of ground terms, and is referred to as UP. The Herbrand Base 

BP of a program P consists of ground equality atoms of the form f(t) = u, where f 
is a user-defined function, t is a ground term, and u is a ground term belonging to 

some complete-lattice domain. Henceforth, we will always use the symbol f to stand 

for a user-defined (i.e., non-constructor) function symbol. 

We develop the model-theoretic semantics without reference to the details of specific 

lattice domains, such as sets, numbers, etc. This allows our presentation to focus on 

the essentials of partial-order clauses without digresssing to discuss the axiomatizations 

(equational theories) of specific data domains. A full treatment of the logical founda- 

tions of the set constructors described in Section 2 is given in [9, lo], and we refer the 

reader to these sources for more information. However, in giving examples to illustrate 

certain points about the semantics, we will need to make use specific data domains. 

An intuitive understanding of these domains suffices for the examples. 

Due to the equational theories for constructors, the predicate = defines an equivalence 

relation over the Herbrand Universe. But, we can always contract a model to a so- 

called normal model where = defines only an identity relation [19] as follows: Take 

the domain D’ of I to be the set of equivalence classes determined by = in the domain 

Up of I. Then use Herbrand =-interpretations, where = denotes that the domain is a 

quotient structure. We then should refer to elements in D’ by [t], i.e. the equivalence 

class of the element t, but in order to make the text more readable, we will refer 

to the [t] elements just as t, keeping in mind that formally we are working with the 

equivalence classes of t. These details are explained in [9, lo]. 

We assume that every interpretation I includes certain equality and inequality atoms 

of the form tl = t2 and tl 6 t2 according to the fixed intended interpretation of them in 

the program. 

We also assume that, in every interpretation I,f is interpreted as a total function, 

i.e., 

(i) (Vt E Up) (3~ t Up) f(t) = u ~1; and 

(ii) f(t)=tl EZ and f(r)=t;?EI=+t, =t2_ 
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Definition 3.1. Let P be a program. An interpretation M is a model of P, denoted by 

A4 k P, if for every ground instance, f(t) 2 tl : - El,. . . , Ek, of a 3 clause in P, if 

{El, . . . , Ek} CM then there exists an atom f(t) = u E M and u B ti . 

We first briefly motivate our approach to the model-theoretic semantics. Basically, 

we define the semantics of a function call f(t), where t is a ground term, to be the glb 
(greatest lower bound) of all terms defined for f(t) in the different Herbrand models 

for f (the definition of model is given below). To see we need to take such glbs, 
consider the following trivial program P: 

f(X)>1 

Here, we assume that the result domain for f is the lattice of totally ordered numbers, 

N:O<l<d<.. f T, for some T. Each model of P interprets f as a constant function: 

f(X) = 1, for all X E Up 

f (XI = 2, for all X E Up 

f(X) =T, for all XEUP 

The intended model for function f, namely, f (X> = 1, for all X E UP, is obtained not 

by the classical set-intersection (n) of all models, but instead by the fl of the terms 

defined for f(t) in the different models. In the above example, fl is, of course, the min 
operator on numbers. 

Theorem 3.1. Every partial-order program is consistent. 

Proof. Assume that every clause of the program is a > inequality. Take the inter- 

pretation such that every function evaluates to the top element of the given complete 

lattice. Then is direct to verify that this interpretation is a model of the program. The 

d case is similar. 0 

But not all syntactically well-formed programs have a well-defined meaning. 

Circularity in function definitions is allowable as long as this occurs through monotonic 
functions. Consider the following program where not is the familiar negation operator, 

which is non-monotonic with respect to the boolean lattice false < true: 

a > not(b) 

b > not (a> 

This program has three models: 

(a = true, b = true) 

{a = true, b = false) 
(a = false, b = true) 
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However, taking the glb of the terms defined for a and b, respectively, in the three 

models gives 

{a = false, b = false) 

which is clearly not a model. Thus, we conclude that non-monotonic functions are 

not permissible when there are circular definitions through such functions. This moti- 

vates our interest in stratified partial-order programs. We begin the discussion of this 

topic with strongly-stratified programs, defined below, and continue the discussion with 

general stratified programs in Section 3.2. 

Definition 3.2 (Strongly-stratified programs). A program P is strongly-stratified if 

there exists a mapping function, level : F -+ N, from the set F of user-defined (i.e., 

non-constructor) function symbols in P to (a finite subset of) the natural numbers ,j’ 

such that 

(i) All clauses of the form f( term) 2 term are permitted. 

(ii) For a clause of the form 

f( term) 2 g(expr) 

where f and g are user-defined functions, Zevel( f) is greater or equal to level(g) 

and Zevel( f) is greater than level(h), where h is any user-defined function symbol 

that occurs in expr. 

(iii) No other form of clause is permitted. 

Note that we have given the above definition using the non-flattened form of program 

clauses because the definition is easier to understand this way. Although a program 

can have different level mappings we assume that we select one that has as image a 

set of consecutive natural numbers that includes 1. For example, in the reach program 

shown in Example 2.4, the function edge would be at level one, and the function reach 

would be at level two. The above definition of stratification is, in another sense, very 

restrictive: it requires a function at any level to be directly defined in terms of other 

functions at the same level. For instance, the programs in Examples 2.5 and 2.6 are 

not strongly-stratified. We therefore relax this requirement in Section 3.3 wherein we 

introduce general strati$ed programs. We introduce strongly-stratified programs first 

because their operational semantics requires simple memo-tables, but not functional 

constraints. 

Definition 3.3. Let P be a set of strongly-stratified program clauses. We define Pk as 

those clauses of P for which the user-defined function symbols on the left-hand sides 

have level <k. 

Definition 3.4. Given two interpretations I and J for a program P, we define I rr J if 

for every f(t) = tl E I there exists f(t) = t2 E J such that tl < t2. We say Z = J if I E J 

and JLZ. 
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We will construct the model-theoretic semantics of a strongly-stratified program level 

by level. Thus, in defining models at some level j > 1, all functions from levels <j 

will have their models uniquely specified. Hence, all interpretations of clauses at some 

level j will contain the same atoms for every function from a level <j. For this reason, 

we will overload the meaning of the function level and use the notation level(A) to 

refer to the level of the head function symbol of atom A: 

Definition 3.5. For any interpretation I, I, := {A: A E I A level(A) <k}. 

Definition 3.6. For any two interpretations I and J of a program P, 

I rlJ:={f(t) = 24 n 24’ : f(t) = u E z, 

f(r) = u’ E J, f a function symbol of P, t E Up} 

Definition 3.7. For any set X of interpretations, fl_X is the natural generalization of 

the previous definition. 

Proposition 3.1. Let X be a set of models for a program P with j levels such that 
for any I EX and J EX. Ij_ 1 = J,_I. Then RX is also a model. 

Definition 3.8. Given a program P with j levels, we define the model-theoretic se- 

mantics of P as 

for j= 1, M(P,):= n {M:M+P,}, and 

for j>l, 4(e):= n {M:Mi-r =M(&i) and M+e}. 

Definition 3.9. Given a program P with j levels and a goal sequence G, we say that 

substitution 0 is a correct answer for G if &‘(pi) + GO. 

3.2. General-strat$ed programs 

The strongly-stratified language defined in Section 3.1 permits the definition of one 

function directly in terms of another function at the same level or lower level. However, 

the general strati$ed language defined below permits the definition of one function in 

terms of another function at the same level using monotonic functions. In the following 

definitions, as before, we assume functions with one argument. 

Definition 3.10. A function f is monotonic if tl < t2 + f (t, ) < f (t2). 

Definition 3.11 (General strat$ed programs). A program P is general stratified if 

there exists a mapping function, level: F + &“, from the set F of user-defined 

(i.e., non-constructor) function symbols in P to (a finite subset of) the natural numbers 

,V such that 

(i) Every clause in Definition 3.2 is permitted. A clause of this form is called S-S 

clause (S-S stands for strongly-stratified). 



(ii) For a clause of the form 

f(terms)>m(g(expr)) 

(iii) 

where m is a monotonic function, level(f) is greater than level(m), level(f) is 

greater or equal to level(g) and level(f) is greater than level(h), where h is any 

function symbol that occurs in expr. A clause of this form is called a G-S clause 

(G-S stands for general-stratified). 

No other form of clause is permitted. 

In the above definition, note that f and g are not necessarily different. Also, non- 

M. Osorio et al. IScience of Computer Programming 34 (1999) 207-238 219 

monotonic “dependence” occurs only with respect to lower-level functions. We can in 

fact have a more liberal definition than the one above: First, since a composition of 

monotonic functions is monotonic, the function m in the above syntax can also be 

replaced by a composition of monotonic functions. Second, it suffices if the ground 

instances of program clauses are stratified in the above manner. This idea is, of course, 

analogous to that of local stratification [25], except that we are working with functions 

rather than predicates. It should be clear that the presence of monotonic functions does 

not call for any alteration of the model-theoretic semantics. The operational semantics, 

however, must be modified to incorporate monotonically updatable memo-tables, as 

illustrated in Example 2.5. 

Finally, we would like to note that in general it is not decidable that we can syntac- 

tically check whether a function definition is monotonic. For certain domains, such as 

sets, it is possible to detect the monotonic&y property in many (but not all) cases by 

a simple syntactic check: this is possible when functions operate element-at-a-time in 

their arguments, i.e., they do not make use of the remainder-sets during pattern match- 

ing. All functions of Section 2 (in Examples 2.1-2.5) possess this property. Note that 

this requirement is sufficient but not necessary, e.g. the function resolvents (Example 

2.3) is monotonic but it makes use of remainder-sets during pattern-matching. Note, 

however, that these remainder-sets are used at an inner level. 

3.3. Constructive semantics 

We now give a more constructive description of M(P), as it will subsequently be 

useful in proving the correctness of the operational semantics. For this purpose, we 

will exploit the syntactic form of general-stratified programs; and, as noted earlier, we 

will make use of the fact that the order of equalities in the bodies of flattened clauses 

reflects the leftmost-innermost order of reducing expressions. 

Definition 3.12. Let P be a consistent general stratified program and J%‘(P) its model- 

theoretic semantics. We define the dependency graph3 of P as a set of nodes N and 

3 This name is not used in the same sense here as elsewhere in the literature. 
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set of edges Ei U Ez, as follows: 

N:={f(t)ltEUp}UUp 

El := {[f(tl)* &(tk)l ( f(tl>hk :-gl(h) = Sl,...,gk(tk)=Sk 

is a ground clause instance of P and (Vi = 1, k)_&‘(P) + gi(ti) = si}. 

EZ := {[f(ti),~] 1 f(tl)>s is a ground clause instance of P}. 

Example 3.2. For the program Reach in Example 2.4, we have reach ({ 1)) > { 1) is 
a ground instance of the program and so there is an edge from reach ({ I}) to { 1). 
There is also an edge from reach({l}) to reach((2)) since reach({l}) > {1,2}:- 

edge({l}) = {2}, reach((2)) ={1,2} 1s a ground instance of program Reach and 
Jif(Reach)f=edge({l}) ={2}Areach({2}) ={1,2). 

Definition 3.13. The dependency graph of P and f(t), for a ground expression f(t), 
is the subgraph of the dependency graph of P that includes f(t) and all its reachable 
nodes. 

For general stratified programs, the correct answer for a basic goal f(t) =X, where t 

is ground, is got by considering only those reachable nodes in the dependency graph for 
f(t) that are associated ground terms and taking the lub of these terms. We formalize 
this intuition below. 

Definition 3.14. Let P be a general stratified consistent program and E the set of edges 
of the dependency graph of P and f(t), for a ground term t. For P and f(t), we define 
a border-set chain (N, E l), where each node of N is called a border-set, as a minimal 
graph closed under the following operations: 
(i) {f(t)} EN, called the initial border-set node of the chain. 

(ii) If BS EN, and Y E BS, and S := {w / [v, w] E E, w does not belong to any border-set 
ofN}, and BS’:=(BS\{v})US, then BS’EN and [BS,BS’]EE~. 

For two different border-sets si and s2 of a given border-set chain, we say si <s2 if a 
path from f(t) to s2 passes through sI. 

Example 3.3. In program Reach there is only one border-set chain for reach({ 1)) 
with three border-sets: {reach({l})}, {{l}, reach((2))) and {{l}, (2)). Moreover 

{reach({l})}<{{l}, ~each({2})}<{{1},{2}}. 

It may be noted in this example that the correct answer for the simple goal reach({ I}) 
can be obtained from a particular border set of reach({ I}), namely, the border set 

{{I), (21). 

Lemma 3.1. Let P be a consistent general stratljied program, f(t) =X a basic goal 
where t is ground and X is a variable, and BS a border-set of a given border-set 
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chain of P and f(t). Then A(P) bf(t)=s where 

s:=lub({u)u~BSnU~}u{~)g(~)~BS,~(P)~g(o) = u}). 

Proof. We use a straightforward induction on the < relation on the border-set nodes 
of the given border set chain for program P and f(t). The base case applies for the 
node {f(t)} and the proof is immediate. For the induction hypothesis, assume that for 
some node BSI that 

For the induction step, suppose that border-set BS, is related to BS1 by a direct edge. 
Then, by Definition 3.12, BS2 :=BS, US\{h(w)}, where h(w) is the ground expression 
being removed from BS and S is the set being added. Also by Definition 3.12, we have 
BSI <B&. By the constructing of the dependency graph (Definition 3.10) and also the 
border-set node, S is equivalent to h(w) - it might only omit ground expressions that 
already belong to the chain but their removal does not affect the answer - and hence 
the lemma holds for B&. 0 

4. Operational semantics 

We first define the lub-reduction of a ground query expression G with respect to 
a general stratified program P starting from its flattened form, in which the order of 
equalities in the bodies of flattened clauses reflects the leftmost-innermost order of 
reducing expressions. This order is necessary so that all arguments of function calls 
will be ground when reduced. 

Definition 4.1. Given a general stratified program P and a ground query f (tl ), where 
tl is a ground term, we define the lub-reduction of f (tl) with respect to P as the 
quadruple (G, C, V, s), as follows (we assume as usual that the variables in distinct 
clause-variants are different). Let 

PI := {f (to) 2 Y : - B8 ( f (tl ) > Y : - B is a S-S clause-variant 

A 0 matches4 t and tl } 

P2 := {f (to) 2 Y : - B8 1 f (tl ) 2 Y : -B is a G-S clause-variant 

A 0 matches t and tl } 

Then 

G:=CAT({B(A :-BEP~}U{B, IA :-BEP~ and B=B, .[last(B)]}) 

4 Note that there can be more than one match. We only require that the number of matches be finite. 

Also note that Y is not affected by 0. 
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C:={Zast(B)(A :-BEPZ} 

V:={Ylf(t)>Y:-BEP, UP*} 

s := lub({u 1 f(tl ) b u is a ground instance of a unit clause}) 

where 

CAT({BI,...,B,}):=[B, ... B,], i.e., concatenating all Bj (order is immaterial) 

Zast( [E, ,...,En]):=En 

If there are no clauses with head f(t)>u such that to= tl for any 8, then s = I, and 

G, C, and V are all empty. 

We separate G, the goal sequence, from C, the equality constraints involving mono- 

tonic functions, since different operational strategies are used to solve them. 

Example 4.1. Let P be the following program in flattened form: 

h(X)>_& :-h(X)=Y,,p(Y,)=Z, % G-S clause 

h(X) > (20) 

h(X)>Zz :-g(X)=Zz % S-S clause 

h(X)2{10} 

P(V\-))b{X30] % S-S clause 

Then the lub-reduction of h( 100) wrt P is (G, C, V,s), where 

G:=[h(lOO)=Y,,g(lOO)=Zz] 

c:= {p(Y,)=zi} 

V := {Z,,Zz} 

s:={10,20} 

Since ~(P)~(VY~,Z~,Z~)((h(100)=Y~Ag(100)=Z~Ap(Y~)=Z~)--,(h(100)=sU 

Zi LIZ*)), the Zub-reduction of h( 100) wrt P maintains in I’ and s the result of the 

query. 

4.1. Operational semantics for strongly-stratified programs 

For strongly-stratified programs, the component C in the lub-reduction of a ground 

expression will be empty because of the absence of G-S clauses. 

Definition 4.2. A memo-table is a set of assertions of the form f(t) = u, where f is 

a user-defined function, t is a ground term, and u is any term. 

Definition 4.3. An extended goal Ge is of the form (G, T) where G is a goal-sequence 

and T is a memo-table. An initial extended goal has the form ([f(t) =X1,4), where 

f is a user-defined function, t is a ground term, and X is a variable. A final extended 

goal has the form ([ 1, T), i.e., the goal sequence is empty at the end. 
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Note that there is no loss of generality in assuming that an initial extended goal 

consists of a single function call f(t). In order to model a query expression e that had 

more than one user-defined function in it, we simply make expression e the body of 

a new function, say g, whose definition is g(0) me, and the initial extended goal then 

becomes ([g(O) =X], 4). 

Definition 4.4. Given a strongly-stratified program P, we define the reduction relation 

G& ---) G; as follows: Let GP := (Gi , TI ), where Gi = [EIR] and E is the first goal, 

g(tr ) = Xi, and R is the remaining goal sequence of Gr . Then G; := (Gz, Tz) is defined 

as follows: 

Reduce: If g(tr ) is not in table Tr , then let the lub-reduction of g(ti ) wrt P be 

the quadruple (G,$,{Yi,...,Y,,},s). Define 0:=(X, tsUYi Ll...LJY,,}, and Gz:=(G. 

R)8, where . is concatenation operator over two goal sequences, and define T2 := ( TI U 

(s(t1) =x1 ) P. 

Table Lookup: If g(tl) = w E T, for some w, then define G2 := R8 and TZ := TIB, 

where 9 is defined as follows: 13 := {Xi +--w} if Xr does not occur in w; otherwise, 

e:={x, tsuY,u . ..Yi_rLJYi+i . ..UY.}, assuming that w is of the form sLlY, U... 

Y_,UX,UYj+i...UY,. 

Example 4.2 (Derivation sequence). We illustrate a derivation sequence using 

Example 2.4, which we reproduce here in the flattened form: 

reach(S) 2 S 

reach({X\_}) 3Sl :- edge(X) =Tl, reach(T1) =Sl 

edge(l) > (2) 

edge(2) 2(l) 

Assume that the top-level query in flattened is reach({ 1)) = Ans. Below we show the 

reduction sequence for this query. 

Goal Sequence Substitution Memo Table 

[reach({l}) =Ansl 4 

[edge(l) =Tl, Ans+{1}us1 {reach({l}) ={l}USl} 

reach(T1) = Sll 

[reach({2}) = Sll Tl +- (2) {reach({l}) ={l}USl, edge(l) ={2}} 

[edge(2) =T2, Slt{2}US2 {reach({l}) ={l}U{2}US2, 

reach(T2) = S2l edge(l)={2},reach({2})={2}US2} 

[reach({l}) =S21 T2+-{I} {reach({l})={1}U{2}US2, 

edge(l)={2},reach({2})={2}US2, 

edge (2) = {I}} 



224 M. Osorio et al. /Science of Computer Programming 34 (1999) 207-238 

[I s2 + {I} u (2) {reach({l})={1}U{2}, edge(l) ={2} 

reach((2)) ={l}U{2}, edge(2) ={I}} 

Note that memo-table look-up occurs in the next-to-last step of the above derivation. 

The computed answer for the variable Ans in the top-level query is obtained from the 

memo-table, and is thus seen to be {I} U (2). 

Lemma 4.1. Let P be a strongly-stratijied program and GP := ([f(t) =X], 4) be an 

extended initial goal. Then, in every extended goal Ge := (G, T), every entry of T is 
of the form f(t) = SI U. . . LI s, uX, I._. . . UX,, where t and every sj are ground, and 
every Xi occurs in G. 

Proof. The proof is by induction on the length of the derivation. The base case 

is immediate since the table in empty. For the induction step, assuming G; satis- 

fies the property and given Ge + Gie,, we prove that G;+, satisfies the property. By 

Definition 4.4, Gie,, can be obtained from GF either by a Reduce or a Table Lookup 
step. In both cases, assume that g(t) =X is the selected goal. In the Reduce step, we 

derive Gie,, by eliminating variable X and substituting it by a term s U Y, U. . . U Y, in 

both the goal sequence and the memo-table of GP. By Definition 4.2 of a lub redution 

step, the new variables Yi , . . . , Y, will all appear in Gie,, . Hence, all entries in the 

memo-table of Gie,, have the desired property. In the Table Lookup step, we eliminate 

X from both the goal sequence and the memo-table of GF and we do not introduce 

any new goals or any new variables. Note that the least solution to the equation X = w 

(assuming g(t) = w is in the memo-table of GF) can be obtained without any new 

variables being introduced. Hence, once again, all entries in the memo-table of G;+, 

will have the desired property. q 

As a consequence of Lemma 4.1, a final extended goal ([ 1, T) cannot have any 

variables in the memo-table T. If any variable were present in T, these would have 

to be present in the associated goal sequence (by Lemma 4.1), but this is impossible 

because the final goal sequence is empty. 

Definition 4.5 (Computed answer). Let P be a strongly-stratified program and G; := 

([f(t) =X1> 4) b e an extended initial goal that terminates, with final extended goal 

G; := ([ 1, Tz). Then the computed answer for Gy is {X +-s}, where f(t) = s E Tz, for 

some s. 

We briefly outline our strategy for the soundness proof, i.e., proving that every 

computed answer is correct. As noted in Section 1, because of the possibility of circular 

function calls, we cannot prove soundness by a straightforward induction on the length 

of the derivation, as is customary for logic programs [ 171. The key to the soundness 

proof is the identification of a suitable memo-table invariant. This invariant states that 

the entry in the memo-table for every functional atom f(t) is related in a certain way 

to a border-set of f(t). We establish in Lemma 4.2 that table invariance implies that 
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a suitable instantiation of each entry in the memo-table is correct according to the 

model-theoretic semantics. We then establish in Lemma 4.3 that the reduction relation 

preserves table invariance. These two lemmas together pave the way for the soundness 

proof. 

Definition 4.6. Let P be a strongly-stratified program and Ge := (G, T) an extended 

goal where G has the correct answer 8. Then G” is said to be table invariant if the 

following condition holds: Every entry of T is of the form f(t) = st u . . Ll s, LIX, U 

uX, where t and every Sj are ground, every Xi occurs in G, and {st , . . . , s,} U @J& 

({XIY.,XJ)\-V(t)I . IS a non-initial border-set of a border-set chain of P and f(t), 

where ~~~({X,,...,X,}):={gi(tie)Ig;(ti)=XiEG, i=l,n}. 

Example 4.3. We illustrate table invariants with a few reduction steps (the third and 

fourth) of the derivation sequence shown in Example 4.2. Let 8 be the correct answer 

for each of the extended goals below. 

1. Consider Ge = (Gs, TJ)= 

(Ireach((2)) = Sll, 

{reach({l}) = {I} USl, edge(l) = (2))). 

Note that di$,(Sl)= { reach((2))) and {{1}, reach((2)) } is a border set for a 

border-set chain of P and reach({ 1) 1. 

2. Consider G” = (GJ, Td)= 
([edge(2) = T2, reach(T2) = S2] 

{reach({l}) ={l}U{2}US2, 

edge(l) ={2}, reach((2)) ={2}US2}) 

Note that @&(S2) = { reach({l})} and {{l},(2)} is a border set of a border- 

set chain of P and reach({l}). Also, {{2}, reach({l})} is a border set for 

reach((2)). 

Lemma 4.2. Let P be a strongly-stratified program and G’ := (G, T) an extended 
goal where G has the correct answer 8. If Ge is table-invariant then every entry of 

the table is of the form f(t) = t’ where t’ is SI U . . Us, UXt U. . . UX,,, t is a ground 
term, every sj is a ground term, and At’(P) k f (t) = t’g. 

Proof. By definition of table invariance, every entry of T is of the form f(t) = SI U . 

us,ux, LJ... UX, where t and every Sj are ground, every Xi occurs in G, and 

{Sl ,...,Sm}U~HG~({XI,-..,Xn})\{f(t)} is a non-initial border-set BS of a border-set 

chain of P and f(t). By Lemma 3.1, A(P)+ f(t)=s, where 

~=lub({u~u~BSnU~}u{u~g(v)~BS,~(P)/=g(v)=u}). 

Thus, s=lub({u~u~BSnUp})~Zub({u~g(v)~BS,~Z(P)~g(v)=~}), 

S’S1 Ll.. . u sm I- W{u I g(v) E Bs, M(P) k g(u) = u)), 
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and 

Since removal of f(t) in the above set is immaterial, we get 

s=slU”‘Us,Ulub({XieIi=l,n})=t’8. q 

Lemma 4.3. Let P be a strongly-stratified program and Gi := ([f(t) =X], 4) be an 

extended initial goal that terminates, with final extended goal GE := ([I, T,,,). Then 
every extended goal Ge := (G, T) of the derivation is table-invariant. 

Proof. The syntactic conditions of the table-invariant property are ensured by 

Lemma 4.1. The semantic conditions are proved by induction on the length of the 

derivation. The base case is trivial since the table is empty. For the induction step 

we have to prove that if Gr is table-invariant and Gy -+ G; then Gz is table-invariant. 

Suppose that G; := (Gt , TI ) is table-invariant and G; + G;. Let Gr be of the form 

[f(t) =X] . R. 
Reduce: If f(t) is not in table T,, then let the Zub-reduction of g(t,) wrt P be the 

quadruple (G,C,{Yt,...,Y,,},s). Then O:={XcsuY~U~~~UY,}, and Gz:=(G.R)B, 

and T2 := (T, U {f(t) =X})O. Let 8’ be the correct answer for G. Then {s} U {g(t’e’) ( 

At’) =X, E GA E v}\{f(t)} is the immediate border-set successor of {f(t)} of a 

border-set chain of P and f(t). Therefore we can safely replace X by s U YI U . . U Y,,, 

and the resulting extended goal Gi is table-invariant. 

Table Lookup: Suppose [f(t) =X] . R has the correct answer 8’, and f(t) = SI U. 

us,Llx, us.. UX, E TI. Variable X must be one of the Xi variables that occur in 

the table entry for f(t). 5 Without loss of generality we can assume that X is Xl. 

Since, by the hypothesis, the extended goal (Gl, T,) is table-invariant, it follows that 

{Sr ,..., &,z}u@G(x,,..., X,,) is a non-initial border-set of a border-set chain of P 

and f(t). Clearly, ($1,. . . ,S,} U @+(X2,. . . , Xn)\{f(t)} is the same border-set and, by 

Lemma 3.1, f(t) = Zub({s&, 1 <i <m} U {Xi@’ ( 2 <i <n} is true in d(P). Hence, we 

can safely replace Xr by X~LI...UX~USI LJ... US, and the resulting extended goal 

Gz is table-invariant. 0 

Theorem 4.1 (Soundness of strongly-stratified programs). Let P be a strongly- 
stratified program and G: := ([f(t) =X], 4) b e an extended initial goal that termi- 
nates with jinal extended goal Gz := ([I, Tz). Then, the computed answer for GT is 
correct. 

Proof. By Lemma 4.3, all extended goals emanating from GF are table-invariant, and 

hence Gz is also table-invariant. Since Gz is the final extended goal, it follows that T2 

5 For general stratified programs this is not necessarily true, but the proof is similar; however, X could 

be a different variable from Xl,. ,X,. 
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has no variables, and, by Lemma 4.2, every entry in T2 is true in A(P). Since the 

computed answer for the goal f(t) =X is extracted from the table T2 and every entry 

in it is true in A!(P), it follows that the computed substitution for X is correct. 0 

The following (unflattened) clause shows that we do not have general completeness: 

f (X> >f ({X)1. 

Notice that a query f (1) = 2 does not have a computed answer - the function call 

is non-terminating - but it has a correct answer 8= {Z +- {}}, i.e., the I element 

of the set-lattice. This is because all functions are interpreted as total functions in 

the declarative semantics. Since incompleteness arises only because of diverging non- 

terminating computations, it has not been a practical problem in using this paradigm. 

Memoization can detect non-termination due to circular function calls. However, due to 

the tmdecidability of the halting problem, one can never devise an operational semantics 

that detects all forms of non-termination. 

4.2. Operational semantics for general stratified programs 

The operational semantics of general stratified programs require more than just mem- 

oization; the main addition to that of strongly-stratified programs is the processing of 

functional-constraints. We start with a simple example (in flattened form) to serve as 

an illustration of this point. 

Example 4.4. Consider the following function definitions for f, g, hy ml and m2. Note 

that ml and m2 are monotonic with respect to the subset ordering: 

f (XI >Sl :- g(X) = Sl 

f (X)&S2 :- h(X) = S2 

f (XI 3s3 :- f(X) = T3,m2(T3) = S3 

g(X) 3s4 :- f(X) = T4,ml(T4) = S4 

h(X) 3{10} 

ml(S)b (20) 

m2G) >{30} 

We show the first few steps of the derivation from the top-level query f (100) = Arm: 

Goal Sequence Substitution Memo Table 

[f (100) = Ans] 

[g(lOO) =Sl, h(lOO) =S2, Ama+-SlUS2US3 {f(lOO) =SlUS2US3} 

f (100) =T3, {m2(T3) =S3}1 
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[f(lOO) = T4, {ml (T4)=S4}, SltS4 {f(lOO) =S4US2US3, 

h(100) =S2, f (100) =T3, g(100) = s4) 

(m2 (T3) =S3}3 

[{ml (S4US2US3)=S4}, 

h(100) =S2, f (100) =T3, 

(m2 (T3) = S3)l 

T4+-S4US2US3 {f(lOO) =S4US2US3, 

g(100) =s4} 

In the above derivation, we find that some elements of a goal sequence are sets, e.g., 

{ml (S4 U S2 U S3) = Sl}, (m2 (T3) = S3}, etc. We refer to each such set as a functional- 

constraint; all functions that appear in a functional-constraint are monotonic. Note that 

the argument to the monotonic function ml in the last step above remains nonground 

even though it is the next goal to be processed. In general, we need to make provision 

to defer such functional-constraints, and also combine them with other related con- 

straints and solve the resulting set as one unit at an appropriate stage in the derivation. 

We develop the operational semantics below, starting with a formal definition of a 

functional-constraint. 

Definition 4.7. A functional-constraint is a set of simple goals {fi (ui ) =X1,. . . , 

fn(un)=Xn}, where each J is monotonic and every U; is the Zub of some variables 

and possibly a ground term. Furthermore, if every U; is of the form ti UXji U . . . UXj,, 

where {X/i,..., Xjm} 2 {Xl,. . . ,Xn} and ti a ground term, and every Xi occurs in some 

uj then we say that the functional-constraint is simple. If {Xji, . . . ,Xjm} is empty then 

Uj is just ti. 

Definition 4.8. Given a functional-constraint C := {fi(ul) =X1,. . . , fn(un) =X,}, we 

define level(C) = min{i 1 P; defines all fj, j = 1, n}. 

The notion of a minimal substitution is required in our approach as we will see 

below. In the definition below, we use the function Vurs(f3) to refer to the domain of 

the substitution 0. 

Definition 4.9. Given two substitutions 8, and &, we define 8, < t12 if Vars(B, ) = 
Vars(& ) and, for all X, if X c sI E 0, then there is an s2 such that X +- s2 E 02 A 

SI 682. Given a set of substitutions, we say that a substitution is minimal if it is a 

minimal element in the set ordered by < as defined before. 

Proposition 4.1. Every simple functional-constraint has a least correct answer. 

Proof. Suppose that a tknctional-constraint C is of the form {fi (~1) = Xi,. . . , fn(un) = 
Xn}. Let the domain of C be D, which by assumption is a complete lattice. Then 

D”, the Cartesian product D x . . . x D taken n times, also defines a complete lattice 

[ 16, 171. Moreover, C induces a monotonic function T : D” + D”, namely T(xl, . . . ,x,) 

=(u,,..., u,). Clearly the correct answers for C are fixed points of T. That is, 0 := {Xi / 
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al,. . . ,XJa,,} is a correct answer of C iff (al,. . . ,a,) is a fixed point of T. Since D” 

is a complete lattice and T is monotonic, T has a least fixed point and so C has a 

least answer, as desired. Cl 

In the above definition, note that if T is continuous then its least fixed point can be 

computed by an iterative procedure. We develop such a procedure below. 

Definition 4.10. For a simple functional-constraint C := {fi (t(r) = Xl,. . . , fn(un) = Xn} 

the computed answer, 8, for C is given by the following procedure: 

a := {X, +-- I,. .,x, + I}; 

repeat 

%:=a; 

a:=u;=, J i 1 X +-s where s is the computed answer for J(uiO) as per 

Definition 4.13 

until 0=a; 

return 8 

In the above definition, we need to obtain the computed answer for a basic goal 

~(~~0) =X;, which is given in Definition 4.12 below. Definitions 4.10-4.12 are thus 

mutually recursive, but the recursion is well-founded because the monotonic functions 

in the constraints are from strictly lower levels. 

Next, we define derivations as for strongly-stratified programs but allowing a goal 

sequence to include functional-contraints as well as basic goals and using the following 

reduction relation. 

Definition 4.11. Given a general-stratified program P, we define the reduction relation 

G; ---f G; as follows: Let GP = (Gr, T,), where Gr = [E/R] and E is the first element 

of GI and R is the remaining goal sequence of G1. Then Gz := (Gz, Tz) is defined as 

follows: 

Reduce: If E is of the form g(tt ) = Xt and g(tr ) is not in table TI , then let the lub- 

reduction of g(tr ) wrt P be the quadruple (G, C, {Y,, . . . , m},s). Define 0 := {Xl c s u 

Yr L.I...U Y,}, and Gz:=(G. [C] .R)tI, and Tz:=(T, U{g(t~)=X,})ti. 

Table Lookup: If E is of the form g(tt ) = Xt and g(tl ) = w E r, for some w, then 

define GZ := Gr0 and T2 := T,O, where 0:= {X1 tw} if X, does not occur in w; 

otherwise, 8 := {X, c s u Y, LI . . . Y-1 LI yi+r . . . I- Y,}, assuming that w is of the form 

suY,u...Yj_,ux,LJYj+ I... UY,. 

Defer Constraint: If E is a functional-constraint, and R = Rl . [C] . R2 where C is a 

functional-constraint and at least one variable (say X) occurs in both E and C, then 

define GZ := Rl . [E U C] R2, and T2 := T,. 
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Solve Constraint: If E is a functional-constraint, and it is not the case that R = R 1 . 
[C] . R2 where C is a functional-constraint with at least one common variable across 

E and C, then G2 := R6 and T, := T, 8, where 0 is the computed answer for E (Defi- 

nition 4.10). 

In the above definition, the defer constraint operation ensures that all related func- 

tional-constraints (i.e., those that involve common variables) are combined together. 

Definition 4.12. Let Gy be an extended initial goal that terminates with final extended 

goal ([I, Tz). We define the computed answer for G; as follows: If GP := ([f(t)=X], c#J), 

where t is ground, then the computed answer for Gr is {X + s}, where f(t) = s E TZ for 

some s. If GT := (C,q5), w h ere C is a simple functional-constraint, then the computed 

answer for Gq is the computed answer for C (as per Definition 4.10). 

Again, an extended goal and a program have only one computed answer modulo 

renaming of variables. We continue the derivation shown in Example 4.4 below, starting 

with the last step in that derivation. 

Goal Sequence 

[{ml (S4 U S2 U S3) = S4}, 

h(100) =S2, f (100) =T3, 

(m2 (T3) = S3}] 

[h(lOO) =S2, f (100) =T3, 

(ml(S4US2US3) =S4, 

m2 (T3) = S3}] 

[f (100) =T3, 

{ml(S4U{lO}US3) =S4, 

m2 (T3) = S3}] 

[{ml(S4U{10}US3)=S4, 

m2 (S4 U { 10) U S3) = S3)l 

[I 

Substitution Memo Table 

T4cS4US2US3 {f (100) =S4US2US3, 

g(iOO) = s4) 

{f (100) =S4US2US3, 

g( 100) = s4) 

s2 + {IO} {f(lOO) =s4u{10}us3, 

g(lO0) = s4, 

h(l00) = {lo}} 

T3+S4U{lO}US3 {f(lOO>=S4U{1O}US3, 

g(100) =s4, 

h(100) = {lo}} 

s3 +- (30) 

s4 +- (20) 

{f (100) ={10,20,30}, 

g(100) = {20}, 

h(l00) = {IO}} 

In the above derivation, a defer constraint operation (case 3 of Definition 4.11) is 

performed at the first step, causing the functional-constraint {ml (S4 U S2 U S3) = S4) 

to be placed along with {m2(T3) = S3). At the last step, the functional-constraint is 

solved according to Definition 4.12. 
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Proposition 4.2. The computed answer for a simple functional-constraint C is the 

least correct answer for C. 

Proof. The definition of the computed answer given in Definition 4.10 makes use of 

the computed answer for J(u0) as per Definition 4.12. Because each J is from a level 

that is lower than the level of C, by induction on the level of the program, we know 

that the computed answer for A(&) is correct. Thus, if the above procedure terminates, 

the substitution computed for 0 is correct for C. 0 

We now prove the soundness of the operational semantics for general stratified pro- 

grams. We need a more general definition of table-invariance than for strongly-stratified 

programs. 

Definition 4.13. Let P be a general stratified program and Ge := (G, T) an extended 

goal where G has the least correct answer 8. Then Ge is said to be table invariant if the 

following condition holds: Every entry of T is of the form f(t) = s1 u . . . LI s,,, UX, U . . 

LAX, where t and every sj are ground, every X, occurs in G, and {si, . . . ,sm} U CD& 

<WI ~...Jn~)\{f(t)~ IS a non-initial border set of a border-set chain of P and f(t), 

where the function @i,(S) is as defined before. 

In the above definition, we can say “the” and not “a” owing to Proposition 4.1. The 

following Lemmas 4.4 and 4.5 are the analogous to Lemmas 4.2 and 4.3, respectively. 

We only need to change “strongly” to “general”, and “correct answer” to “least correct 

answer” in the statements of the new lemmas. 

Lemma 4.4. Let P be a general stratijiedprogram and Ge := (G, T) an extended goal 

where G has the least correct answer 8. If G” is table-invariant then every entry of 
the tableisoftheform f(t)=t’wheret’iss,U...Us,UX,U...UX,, t isaground 
term, every sj is a ground term, and A(P) j= f (t) = t’8. 

Proof. Analogous to the proof of Lemma 4.2. q 

Lemma 4.5. Given a general stratified program P and an extended goal G:, each 
extended goal derived by the relation + is invariant. 

Proof. The proof is by induction on the well-founded order imposed by the level of the 

program. The Reduce and Table Lookup cases are as before (Lemma 4.3). The new 

cases are Solve Constraint and Defer Constraint which we now consider. The Defer 

Constraint step merely reorganizes the goal-sequence, and it is easy to see that the 

invariant is maintained. Hence, we consider the Solve Constraint step. Let Gy + G;, 

where GT = (Gi, T1) and Gi = [EIR] and E is a simple functional-constraint, g(tl ) =X1 

with level(E) = i and R is the remaining goal sequence of Gi. Then G; := (Gz, T2) by 

definition is as follows: G2 := RB and T2 := T, 8, where 0 is the computed answer for E. 
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By Proposition 4.2, 6 is also the least correct answer for E. Hence, the correct answer 

for GI should agree with 13 with respect to the variables in E. Since this reduction step 

does not introduce new variables, the statement now is immediately true. 0 

Theorem 4.2 (Soundness of general stratified programs). Let P be a general stratified 

program and Ge := ([f(t) =X], 4) an extended initial goal that terminates, with final 
extended goal Gz := ([ 1, Tz). Then the computed answer for Ge is correct. 

Proof. Similar to the proof of Theorem 4.1, we can show by induction that G; is 

table-invariant (the induction step foflows by Lemma 4.5 instead of Lemma 4.3). Now, 

since Gz is table-invariant and is also final, TZ has no variables. By Lemma 4.4, it 

follows that every entry in TI is true in A(P). Since the computed answer for the 

goal f(t) =X is extracted from the table TZ and every entry in it is true in A!(P), it 

follows that the computed substitution for X is correct. q 

5. Monotonic aggregation 

We show in this section that the paradigm of partial-order programming is ideally 

suited to the formulation of database queries, especially recursive aggregate operations. 

For this purpose, we first introduce conditional partial-order clauses: 

f (terms) > expression : - condition 

f (terms) < expression : - condition 

where each variable in expression occurs either in terms or in condition, and condition 
is in general a conjunction of relational or equational goals defined as follows: 

condition : : = goal / goal, condition 

goal : : = p(terms) 1 Ip(terms) 1 f (terms) = term 

where the predicate p appearing in p(terms) above is an extensional database predi- 
cate, i.e., one that is defined by ground unit clauses. 

A well-formed program is one that satisfies the generalized local stratification condi- 

tion of Section 3.2. Declaratively speaking, the meaning of a conditional clause is that, 

for all its ground instantiations, the partial-order is asserted to be true if the condition 
is true. Procedurally, condition is processed first before expression is evaluated. The 

literals in condition are processed in a left-to-right order. When new variables appear 

in condition (i.e., those that are not on the left-hand side), we require that the left-to- 

right processing of all functional calls f( terms) and all negated goals 1 p( terms) will 

result in ground arguments. This requirement is necessary because functions can be 

used only for reduction (and not narrowing, or equation-solving [7]), as in functional 

languages, and negation-as-failure may be unsound for nonground arguments. Note that 
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the compiler can perform groundness analysis in order to certify the well-formedness 
of many programs, and such a check is incorporated in our compiler [21]. 

Conditional partial-order clauses may be may be contrasted with the flattened form 
of unconditional partial-order clauses discussed in Sections 2-4. For an unconditional 
clause of the form f( terms) > expression, the leftmost-innermost order of flattening ex- 
pression would produce a sequence of literals such that a left-to-right processing would 
guarantee that every function is called with ground arguments. Conditional clauses do 
not automatically enjoy this property. This is one of the reasons that we treat them 
separately in this paper. Besides, the paradigm of conditional clauses also permits pred- 
icate definitions (i.e., database facts), a feature that is not present in the the paradigm 
of unconditional clauses. 

We now present a few examples to explain the use of conditional partial-order 
clauses. The following table summarizes the various forms of clauses to be used in 
these examples. 

Type of partial order Least/greatest element LUBIGLB 

2 4 (1) union (lub) 

d max-int (T) min2 (g/b) 

3 false (I) or (lub) 

Our implemented language is flexible in that a programmer can declare, for any given 
function definition, what should be the least/greatest element [21]. Thus max-int in 
the above table is chosen by the programmer to suit the problem at hand. A possible 
syntax for this declaration is as follows: 

function short/max_int 

It is also possible in principle to let the user specify the definitions of the lub/glb 
operations (although our current implementation does not yet support it). In the above 
table, min2 is the minimum of two integers. 

It may be seen that specifying the least/greatest element is similar to the notion of 
defaults in the terminology of Sudarshan et al. [27], while specifying the lub/glb corre- 
sponds to the notion ofjirst-order aggregate operations in the sense of Van Gelder [29]. 
Furthermore, the inductive aggregates are user-definable; that is, we are not restricted 
to a fixed set of built-in aggregate operations. 

Example 5.1 (Reachable nodes). 

reach(X) 3 {X} 

reach(X)>reach(Y) :- edge(X,Y) 
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The above program is a reformulation of the reach function of Section 2.2 using 

an edge (X , Y> relation (the extensional database). This definition is amenable to more 

efficient memoization since the argument for reach is a constant rather than a set. 

Except for this difference, the execution of a top-level query against this program is 

essentially identical to that of the program in Section 2.2. 

Example 5.2 (Shortest distance). 

short(X,Y) QC :- edge(X,Y,C) 

short(X,Y)<C+short(Z,Y) :- edge(X,Z,C) 

This definition for short is very similar to that for reach, except that the aggre- 

gate operation here min2 (instead of U). The relation edge(X,Y ,C> means that there 

is a directed edge from X to Y with distance C which is non-negative. The default 

distance between any two nodes is max_int. The + operator is monotonic with re- 

spect to the numeric ordering, and hence the program is well-defined. The logic of 

the shortest-distance problem is very clearly specified in the above program. And our 

computational model (reduction + monotonically updatable memo-tables) provides bet- 

ter efficiency than a dynamic programming algorithm because top-down control avoids 

solving any unnecessary subproblems. Still, this is not the best control strategy for 

the shortest-distance problem. By specifying that the underlying lattice ordering is a 

total ordering and that min2 distributes over +, it is possible to mimic a Dijkstra-style 

shortest-path algorithm. While annotations for distribution are discussed in [l l] and is 

supported by our implementation, we do not yet support annotations that specify total- 

ordering. 

Example 5.3 (Company controls [26]). 

controls(X,Y) >gt(sum(holdings(X,Y)), 50) 

holdings(X,Y)3{s(X,Y,N)} :- sh=as(X,Y,N) 

holdings(X,Y)a{a(X,Y,N)} :- shares(Z,Y,N), controls(X,Z) =true 

This example illustrates the use of an inductive aggregate operation, stun. 6 The func- 

tion controls(X,Y) returns true if company X controls Y, and false otherwise. The 

relation shares (X,Y ,N) means that company X holds N % of the shares of company Y. 

Cyclic holdings are possible, i.e., company X may have directly holdings in company Y, 

and vice versa. Here we see recursion over aggregation: a company X controls Y if the 

sum of X’s ownership in Y together with the ownership in Y of all companies Z con- 

trolled by X exceeds 50%. Since percentages are non-negative, sum is monotonic with 

respect to the subset ordering. The function gt (X ,Y> stands for numeric greater-than, 

and is monotonic in its first argument with respect to the ordering false <= true. 

6The function sum can be defined as: sum({)) =0 and sum({s(-,-,N)\T})=N + sum(T) 
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Hence the conditions are satisfied for a well-defined semantics. Note that the default 

value for controls (X,Y> is false. (With reference to the syntax of programs given in 

Section 3.3, we are making use of the fact that a composition of monotonic functions is 

monotonic. Hence the clause controls (X , Y> > gt (sum(holdings (X , Y> 1, 50) is le- 

gal, because gt and sum are monotonic.) 

6. Conclusions and related work 

Partial-order clauses and lattice domains provide a concise and elegant means for 

programming problems involving circular constraints and aggregation. Such problems 

arise throughout deductive databases, program analysis, and related fields. While the 

language of unconditional partial-order clauses is a purely functional language, the 

provision of conditional clauses shows how these clauses can be integrated with an 

extensional database of relations. The resulting language can be seen as a functional 
query language. The elegance of this framework is attested to by its simple model- 

theoretic and operational semantics. The computational model for partial-order programs 

combines top-down goal reduction with memo-tables, and has been proven to be sound. 

The implementation of partial-order clauses was carried out by Kyonghee Moon [21], 

and all program examples in this paper were tested out using this implementation. 

The two main technical results of this paper are: (i) providing a least-model se- 

mantics for partial-order programs; and (ii) providing a proof for the soundness of the 

operational semantics. Both results are novel in that the least model cannot be obtained 

by the standard intersection of all models (as in logic programs) and the soundness 

proof cannot be obtained by the standard induction on the length of the derivation. The 

development of the soundness proof was the most difficult part of this research, and 

may be regarded as the main contribution of this paper. To facilitate this proof, we 

developed a constructive description of the model-theoretic semantics in terms of the 

notion of the dependency graph of a function call. We also needed to devise a suitable 

table-invariant that captured the correctness of the derivation despite the presence of 

circular function calls. 

Our concept of partial-order programming is closely related to that proposed of Stott 

Parker in his seminal paper [24]. Essentially, in his paradigm, a program is a set of 

clauses of the form ui 7 h(V), for i = 1,. . . , n, where each fi is continuous, and the 

goal is to minimize aj, for some j. Parker presents a number of very elegant examples 

illustrating his paradigm. At a high level, that is essentially what we are also proposing. 

There are, however, several important differences: we use partial-order clauses to define 
functions; these clauses can be conditional and they can use non-monotonic functions 

(modulo stratification). These are important features for solving problems involving 

circular constraints and aggregation, and, to the best of our understanding, they are not 

discussed in Parker’s framework. 

In a recent paper we have provided the logical semantics for the use of set construc- 

tors in logic programs, and shown that such set constructors do indeed behave as finite 
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sets as in ZF set theory [lo]. The present paper is broader in scope because it deals 
with more general structures than just sets. Nevertheless, sets and subset clauses are 
an important special case of the partial-order programming framework. Other declar- 
ative approaches to sets includes recent work on structural recursion on sets [4], and 
also to the CLP formulation of sets [6]. Basically, the work on structural recursion 
on sets provides a typed approach to combining relational algebra and equation-based 
functional programming. In contrast, we try to combine an extensional database of re- 
lations with partial-order-based functional programming. In comparison with the CLP 
approach to finite sets [6], we note that their goal was more to formalize the semantics 

of finite sets in the CLP framework, and therefore they do not address the formulation 
of aggregate operations - aggregation being a meta-level concept with respect to the 
standard CLP framework. A distinguishing feature of our set constructor {X\T} is that 
it matches a set S such that X E S and T = S - {X}. The ability to form the remainder 

set T is unique to our approach and is crucial in writing recursive definitions. 
Other related work includes COL [l], LDL [3] and Relationlog [16]. According to 

[ 161, neither COL or LDL can give a semantics to a program like 

ancestors(X,(Y)) :- parents(X,(Z)), ancestors(Z,(Y)). 

A direct translation of this clause into a partial-order clause gives us 

ancestors(X) >ancestors(Z) :- parents(X) ={Z\-}. 

This program is similar to the reach example from Section 5, and is strongly-stratified. 
Hence it is well-defined according to our semantics, and it agrees with the one provided 
by Relationlog. But Relationlog only allows atoms with complete set-terms on the right- 
hand side of a clause if they belong to a lower level. That is, they only consider what 
we call strongly-stratified programs. Also, [ 161 only considers set-based lattices and 
they do not provide an operational semantics for Relationlog. 

Our language has the flavor of a functional-logic language [7], but there are two 
important differences: partial-order clauses are used instead of equational clauses; func- 
tional expressions are reduced (by matching), and not narrowed (by unification). The 
provision of partial-order clauses and memo-tables are crucial for formulating mono- 
tonic aggregation, and these features are not so easily simulated in functional-logic 
languages without nontrivial changes to their semantics. 

Finally, we recognize that there are many programming situations where it is more 
appropriate to use equations or general relations than partial-orders, e.g., to compute 
the cardinal@ of a set, test for set-membership, etc. The partial-order programming 
framework described here can be combined with an equational language for defining 
functions (such as ML), as well as a predicate-logic language for defining relations 
(such as Prolog). Such an integrated language, called SURE, has been implemented in 
recent work [21], and we have found it to be a practical tool for prototyping applications 
involving sophisticated data querying. 
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