267 research outputs found

    Enhancing Cyber-Resiliency of DER-based SmartGrid: A Survey

    Full text link
    The rapid development of information and communications technology has enabled the use of digital-controlled and software-driven distributed energy resources (DERs) to improve the flexibility and efficiency of power supply, and support grid operations. However, this evolution also exposes geographically-dispersed DERs to cyber threats, including hardware and software vulnerabilities, communication issues, and personnel errors, etc. Therefore, enhancing the cyber-resiliency of DER-based smart grid - the ability to survive successful cyber intrusions - is becoming increasingly vital and has garnered significant attention from both industry and academia. In this survey, we aim to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid. Firstly, an integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis. Then, the defense-in-depth strategies encompassing prevention, detection, mitigation, and recovery are comprehensively surveyed, systematically classified, and rigorously compared. A CRE framework is subsequently proposed to incorporate the five key resiliency enablers. Finally, challenges and future directions are discussed in details. The overall aim of this survey is to demonstrate the development trend of CRE methods and motivate further efforts to improve the cyber-resiliency of DER-based smart grid.Comment: Submitted to IEEE Transactions on Smart Grid for Publication Consideratio

    Smart Grid for the Smart City

    Get PDF
    Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users

    Development of a Reference Design for Intrusion Detection Using Neural Networks for a Smart Inverter

    Get PDF
    The purpose of this thesis is to develop a reference design for a base level implementation of an intrusion detection module using artificial neural networks that is deployed onto an inverter and runs on live data for cybersecurity purposes, leveraging the latest deep learning algorithms and tools. Cybersecurity in the smart grid industry focuses on maintaining optimal standards of security in the system and a key component of this is being able to detect cyberattacks. Although researchers and engineers aim to design such devices with embedded security, attacks can and do still occur. The foundation for eventually mitigating these attacks and achieving more robust security is to identify them reliably. Thus, a high-fidelity intrusion detection system (IDS) capable of identifying a variety of attacks must be implemented. This thesis provides an implementation of a behavior-based intrusion detection system that uses a recurrent artificial neural network deployed on hardware to detect cyberattacks in real time. Leveraging the growing power of artificial intelligence, the strength of this approach is that given enough data, it is capable of learning to identify highly complex patterns in the data that may even go undetected by humans. By intelligently identifying malicious activity at the fundamental behavior level, the IDS remains robust against new methods of attack. This work details the process of collecting and simulating data, selecting the particular algorithm, training the neural network, deploying the neural network onto hardware, and then being able to easily update the deployed model with a newly trained one. The full system is designed with a focus on modularity, such that it can be easily adapted to perform well on different use cases, different hardware, and fulfill changing requirements. The neural network behavior-based IDS is found to be a very powerful method capable of learning highly complex patterns and identifying intrusion from different types of attacks using a single unified algorithm, achieving up to 98% detection accuracy in distinguishing between normal and anomalous behavior. Due to the ubiquitous nature of this approach, the pipeline developed here can be applied in the future to build in more and more sophisticated detection abilities depending on the desired use case. The intrusion detection module is implemented in an ARM processor that exists at the communication layer of the inverter. There are four main components described in this thesis that explain the process of deploying an artificial neural network intrusion detection algorithm onto the inverter: 1) monitoring and collecting data through a front-end web based graphical user interface that interacts with a Digital Signal Processor that is connected to power-electronics, 2) simulating various malicious datasets based on attack vectors that violate the Confidentiality-Integrity-Availability security model, 3) training and testing the neural network to ensure that it successfully identifies normal behavior and malicious behavior with a high degree of accuracy, and lastly 4) deploying the machine learning algorithm onto the hardware and having it successfully classify the behavior as normal or malicious with the data feeding into the model running in real time. The results from the experimental setup will be analyzed, a conclusion will be made based upon the work, and lastly discussions of future work and optimizations will be discussed

    A Survey of Protocol-Level Challenges and Solutions for Distributed Energy Resource Cyber-Physical Security

    Get PDF
    The increasing proliferation of distributed energy resources (DERs) on the smart grid has made distributed solar and wind two key contributors to the expanding attack surface of the network; however, there is a lack of proper understanding and enforcement of DER communications security requirements. With vendors employing proprietary methods to mitigate hosts of attacks, the literature currently lacks a clear organization of the protocol-level vulnerabilities, attacks, and solutions mapped to each layer of the logical model such as the OSI stack. To bridge this gap and pave the way for future research by the authors in determining key DER security requirements, this paper conducts a comprehensive review of the key vulnerabilities, attacks, and potential solutions for solar and wind DERs at the protocol level. In doing so, this paper serves as a starting point for utilities, vendors, aggregators, and other industry stakeholders to develop a clear understanding of the DER security challenges and solutions, which are key precursors to comprehending security requirements

    Enabling sustainable power distribution networks by using smart grid communications

    Get PDF
    Smart grid modernization enables integration of computing, information and communications capabilities into the legacy electric power grid system, especially the low voltage distribution networks where various consumers are located. The evolutionary paradigm has initiated worldwide deployment of an enormous number of smart meters as well as renewable energy sources at end-user levels. The future distribution networks as part of advanced metering infrastructure (AMI) will involve decentralized power control operations under associated smart grid communications networks. This dissertation addresses three potential problems anticipated in the future distribution networks of smart grid: 1) local power congestion due to power surpluses produced by PV solar units in a neighborhood that demands disconnection/reconnection mechanisms to alleviate power overflow, 2) power balance associated with renewable energy utilization as well as data traffic across a multi-layered distribution network that requires decentralized designs to facilitate power control as well as communications, and 3) a breach of data integrity attributed to a typical false data injection attack in a smart metering network that calls for a hybrid intrusion detection system to detect anomalous/malicious activities. In the first problem, a model for the disconnection process via smart metering communications between smart meters and the utility control center is proposed. By modeling the power surplus congestion issue as a knapsack problem, greedy solutions for solving such problem are proposed. Simulation results and analysis show that computation time and data traffic under a disconnection stage in the network can be reduced. In the second problem, autonomous distribution networks are designed that take scalability into account by dividing the legacy distribution network into a set of subnetworks. A power-control method is proposed to tackle the power flow and power balance issues. Meanwhile, an overlay multi-tier communications infrastructure for the underlying power network is proposed to analyze the traffic of data information and control messages required for the associated power flow operations. Simulation results and analysis show that utilization of renewable energy production can be improved, and at the same time data traffic reduction under decentralized operations can be achieved as compared to legacy centralized management. In the third problem, an attack model is proposed that aims to minimize the number of compromised meters subject to the equality of an aggregated power load in order to bypass detection under the conventionally radial tree-like distribution network. A hybrid anomaly detection framework is developed, which incorporates the proposed grid sensor placement algorithm with the observability attribute. Simulation results and analysis show that the network observability as well as detection accuracy can be improved by utilizing grid-placed sensors. Conclusively, a number of future works have also been identified to furthering the associated problems and proposed solutions

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts-Volume II

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications, such as hybrid and microgrid power systems based on the Energy Internet, Blockchain technology, and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above

    Signal Processing and Robust Statistics for Fault Detection in Photovoltaic Arrays

    Get PDF
    abstract: Photovoltaics (PV) is an important and rapidly growing area of research. With the advent of power system monitoring and communication technology collectively known as the "smart grid," an opportunity exists to apply signal processing techniques to monitoring and control of PV arrays. In this paper a monitoring system which provides real-time measurements of each PV module's voltage and current is considered. A fault detection algorithm formulated as a clustering problem and addressed using the robust minimum covariance determinant (MCD) estimator is described; its performance on simulated instances of arc and ground faults is evaluated. The algorithm is found to perform well on many types of faults commonly occurring in PV arrays. Among several types of detection algorithms considered, only the MCD shows high performance on both types of faults.Dissertation/ThesisM.S. Electrical Engineering 201

    Data Analytics and Machine Learning to Enhance the Operational Visibility and Situation Awareness of Smart Grid High Penetration Photovoltaic Systems

    Get PDF
    Electric utilities have limited operational visibility and situation awareness over grid-tied distributed photovoltaic systems (PV). This will pose a risk to grid stability when the PV penetration into a given feeder exceeds 60% of its peak or minimum daytime load. Third-party service providers offer only real-time monitoring but not accurate insights into system performance and prediction of productions. PV systems also increase the attack surface of distribution networks since they are not under the direct supervision and control of the utility security analysts. Six key objectives were successfully achieved to enhance PV operational visibility and situation awareness: (1) conceptual cybersecurity frameworks for PV situation awareness at device, communications, applications, and cognitive levels; (2) a unique combinatorial approach using LASSO-Elastic Net regularizations and multilayer perceptron for PV generation forecasting; (3) applying a fixed-point primal dual log-barrier interior point method to expedite AC optimal power flow convergence; (4) adapting big data standards and capability maturity models to PV systems; (5) using K-nearest neighbors and random forests to impute missing values in PV big data; and (6) a hybrid data-model method that takes PV system deration factors and historical data to estimate generation and evaluate system performance using advanced metrics. These objectives were validated on three real-world case studies comprising grid-tied commercial PV systems. The results and conclusions show that the proposed imputation approach improved the accuracy by 91%, the estimation method performed better by 75% and 10% for two PV systems, and the use of the proposed forecasting model improved the generalization performance and reduced the likelihood of overfitting. The application of primal dual log-barrier interior point method improved the convergence of AC optimal power flow by 0.7 and 0.6 times that of the currently used deterministic models. Through the use of advanced performance metrics, it is shown how PV systems of different nameplate capacities installed at different geographical locations can be directly evaluated and compared over both instantaneous as well as extended periods of time. The results of this dissertation will be of particular use to multiple stakeholders of the PV domain including, but not limited to, the utility network and security operation centers, standards working groups, utility equipment, and service providers, data consultants, system integrator, regulators and public service commissions, government bodies, and end-consumers

    Reliability in a smart power system with cyber-physical interactive operation of photovoltaic systems and heat pumps

    Get PDF
    The connectivity of the power grid is increasing with the internet of things, and low carbon technologies being deployed to help enhance smart grid performance and reliability. Meanwhile, they also increase the digital complexity and dependency of cyber assets, which might be vulnerable to cyber-physical threats, and hence may impact the reliability of power systems. Due to cyber-threats’ unpredictable nature, the interactive operation of low carbon technologies with cyber-physical systems is becoming a challenging task for smart grids. This thesis proposes novel mathematical frameworks to estimate the availability of photovoltaics and heat pumps with cyber-physical components. These frameworks are developed to quantify the level of risk posed by cyber-threats to the interactive operation of photovoltaics and heat pumps, using Markov-Chains. The availability framework considers the severity of random cyber-attacks on photovoltaics and the probability of cyber-threats with mean time to detection-time on heat pump operation. Sensitivities of the repair times of cyber-physical component for photovoltaics and sensitivities of cyber-attack-detection time for heat pumps are also evaluated. The impact of cyber threats on the interactive operation of photovoltaics and heat pumps are considerable and inconsistent, however the propagation of cyber-threats can be restricted by appropriate means of photovoltaics. For heat pumps, operational reliability substantially decreases due to the unavailability of their control panel. Contributions of this thesis include an availability model for photovoltaic configurations, an innovative approach to assess the reliability of a photovoltaic integrated power system with cyber-physical interactions, the availability estimation of heat pump with variable detection time, and an enhanced cyber-intrusion process model for reliability analysis of heat pumps. The findings offer insight into the impact of cyber-physical system availability and its importance on power system reliability
    • …
    corecore