1,365 research outputs found

    Reconfigurable Intelligent Surfaces in Challenging Environments: Underwater, Underground, Industrial and Disaster

    Get PDF
    Reconfigurable intelligent surfaces (RISs) have been introduced to improve the signal propagation characteristics by focusing the signal power in the preferred direction, thus making the communication environment "smart". The typical use cases and applications for the "smart" environment include beyond 5G communication networks, smart cities, etc. The main advantage of employing RISs in such networks is a more efficient exploitation of spatial degrees of freedom. This advantage manifests in better interference mitigation as well as increased spectral and energy efficiency due to passive beam steering. Challenging environments comprise a range of scenarios, which share the fact that it is extremely difficult to establish a communication link using conventional technology due to many impairments typically associated with the propagation medium and increased signal scattering. Although the challenges for the design of communication networks, and specifically the Internet of Things (IoT), in such environments are known, there is no common enabler or solution for all these applications. Interestingly, the use of RISs in such scenarios can become such an enabler and a game changer technology. Surprisingly, the benefits of RIS for wireless networking in underwater and underground medium as well as in industrial and disaster environments have not been addressed yet. In this paper, we aim at filling this gap by discussing potential use cases, deployment strategies and design aspects for RIS devices in underwater IoT, underground IoT as well as Industry 4.0 and emergency networks. In addition, novel research challenges to be addressed in this context are described.Comment: 16 pages, 13 figures, submitted for publication in IEEE journa

    Adaptive Fuzzy Game-based Energy Efficient Localization in 3D Underwater Sensor Networks

    Get PDF
    Numerous applications in 3D underwater sensor networks (UWSNs), such as pollution detection, disaster prevention, animal monitoring, navigation assistance, and submarines tracking, heavily rely on accurate localization techniques. However, due to the limited batteries of sensor nodes and the di!culty for energy harvesting in UWSNs, it is challenging to localize sensor nodes successfully within a short sensor node lifetime in an unspeci"ed underwater environment. Therefore, we propose the Adaptive Energy-E!cient Localization Algorithm (Adaptive EELA) to enable energy-e!cient node localization while adapting to the dynamic environment changes. Adaptive EELA takes a fuzzy game-theoretic approach, whereby Stackelberg game is used to model the interactions among sensor and anchor nodes in UWSNs and employs the adaptive neuro-fuzzy method to set the appropriate utility functions. We prove that a socially optimal Stackelberg–Nash Equilibrium is achieved in Adaptive EELA. Through extensive numerical simulations under various environmental scenarios, the evaluation results show that our proposed algorithm accomplishes a signi"cant energy reduction, e.g., 66% lower compared to baselines, while achieving a desired performance level in terms of localization coverage, error, and delay

    EFFICIENT DYNAMIC ADDRESSING BASED ROUTING FOR UNDERWATER WIRELESS SENSOR NETWORKS

    Get PDF
    This thesis presents a study about the problem of data gathering in the inhospitable underwater environment. Besides long propagation delays and high error probability, continuous node movement also makes it difficult to manage the routing information during the process of data forwarding. In order to overcome the problem of large propagation delays and unreliable link quality, many algorithms have been proposed and some of them provide good solutions for these issues, yet continuous node movements still need attention. Considering the node mobility as a challenging task, a distributed routing scheme called Hop-by-Hop Dynamic Addressing Based (H2- DAB) routing protocol is proposed where every node in the network will be assigned a routable address quickly and efficiently without any explicit configuration or any dimensional location information. According to our best knowledge, H2-DAB is first addressing based routing approach for underwater wireless sensor networks (UWSNs) and not only has it helped to choose the routing path faster but also efficiently enables a recovery procedure in case of smooth forwarding failure. The proposed scheme provides an option where nodes is able to communicate without any centralized infrastructure, and a mechanism furthermore is available where nodes can come and leave the network without having any serious effect on the rest of the network. Moreover, another serious issue in UWSNs is that acoustic links are subject to high transmission power with high channel impairments that result in higher error rates and temporary path losses, which accordingly restrict the efficiency of these networks. The limited resources have made it difficult to design a protocol which is capable of maximizing the reliability of these networks. For this purpose, a Two-Hop Acknowledgement (2H-ACK) reliability model where two copies of the same data packet are maintained in the network without extra burden on the available resources is proposed. Simulation results show that H2-DAB can easily manage during the quick routing changes where node movements are very frequent yet it requires little or no overhead to efficiently complete its tasks
    • …
    corecore