2 research outputs found

    Assessing the potential of remotely-sensed drone spectroscopy to determine live coral cover on Heron Reef

    Get PDF
    Coral reefs, as biologically diverse ecosystems, hold significant ecological and economic value. With increased threats imposed on them, it is increasingly important to monitor reef health by developing accessible methods to quantify coral cover. Discriminating between substrate types has previously been achieved with in situ spectroscopy but has not been tested using drones. In this study, we test the ability of using point-based drone spectroscopy to determine substrate cover through spectral unmixing on a portion of Heron Reef, Australia. A spectral mixture analysis was conducted to separate the components contributing to spectral signatures obtained across the reef. The pure spectra used to unmix measured data include live coral, algae, sand, and rock, obtained from a public spectral library. These were able to account for over 82% of the spectral mixing captured in each spectroscopy measurement, highlighting the benefits of using a public database. The unmixing results were then compared to a categorical classification on an overlapping mosaicked drone image but yielded inconclusive results due to challenges in co-registration. This study uniquely showcases the potential of using commercial-grade drones and point spectroscopy in mapping complex environments. This can pave the way for future research, by increasing access to repeatable, effective, and affordable technology

    Feature Papers of Drones - Volume II

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 24–41 are focused on drone applications, but emphasize two types: firstly, those related to agriculture and forestry (articles 24–35) where the number of applications of drones dominates all other possible applications. These articles review the latest research and future directions for precision agriculture, vegetation monitoring, change monitoring, forestry management, and forest fires. Secondly, articles 36–41 addresses the water and marine application of drones for ecological and conservation-related applications with emphasis on the monitoring of water resources and habitat monitoring. Finally, articles 42–54 looks at just a few of the huge variety of potential applications of civil drones from different points of view, including the following: the social acceptance of drone operations in urban areas or their influential factors; 3D reconstruction applications; sensor technologies to either improve the performance of existing applications or to open up new working areas; and machine and deep learning development
    corecore