51 research outputs found

    Electronic Number Plate Generation for Performance Evaluation

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the accepted manuscript version of a conference paper which has been published in final form at https://doi.org/10.1109/ICCST52959.2022.9896515The authors have been involved in real world analysis of Automatic Number Plate Recognition (ANPR) data and systems particularly for law enforcement applications. As a result of such work with Law Enforcement Agencies, contributions have been made to the revision of the British Standards for ANPR. This led to the research team developing performance evaluation measures from an end-to-end system perspective. One such measure was the generation of synthetic image datasets suitable for ANPR performance evaluation. The prime requirement for any ANPR system is data accuracy. This paper reports the initial work and progress made using defined synthetic images to test and assess ANPR engines using a structured methodology

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    A Review on Vehicle Classification and Potential Use of Smart Vehicle-Assisted Techniques

    Get PDF
    Vehicle classification (VC) is an underlying approach in an intelligent transportation system and is widely used in various applications like the monitoring of traffic flow, automated parking systems, and security enforcement. The existing VC methods generally have a local nature and can classify the vehicles if the target vehicle passes through fixed sensors, passes through the short-range coverage monitoring area, or a hybrid of these methods. Using global positioning system (GPS) can provide reliable global information regarding kinematic characteristics; however, the methods lack information about the physical parameter of vehicles. Furthermore, in the available studies, smartphone or portable GPS apparatuses are used as the source of the extraction vehicle’s kinematic characteristics, which are not dependable for the tracking and classification of vehicles in real time. To deal with the limitation of the available VC methods, potential global methods to identify physical and kinematic characteristics in real time states are investigated. Vehicular Ad Hoc Networks (VANETs) are networks of intelligent interconnected vehicles that can provide traffic parameters such as type, velocity, direction, and position of each vehicle in a real time manner. In this study, VANETs are introduced for VC and their capabilities, which can be used for the above purpose, are presented from the available literature. To the best of the authors’ knowledge, this is the first study that introduces VANETs for VC purposes. Finally, a comparison is conducted that shows that VANETs outperform the conventional techniques

    A Review on Vehicle Classification and Potential Use of Smart Vehicle-Assisted Techniques

    Get PDF
    Vehicle classification (VC) is an underlying approach in an intelligent transportation system and is widely used in various applications like the monitoring of traffic flow, automated parking systems, and security enforcement. The existing VC methods generally have a local nature and can classify the vehicles if the target vehicle passes through fixed sensors, passes through the short-range coverage monitoring area, or a hybrid of these methods. Using global positioning system (GPS) can provide reliable global information regarding kinematic characteristics; however, the methods lack information about the physical parameter of vehicles. Furthermore, in the available studies, smartphone or portable GPS apparatuses are used as the source of the extraction vehicle’s kinematic characteristics, which are not dependable for the tracking and classification of vehicles in real time. To deal with the limitation of the available VC methods, potential global methods to identify physical and kinematic characteristics in real time states are investigated. Vehicular Ad Hoc Networks (VANETs) are networks of intelligent interconnected vehicles that can provide traffic parameters such as type, velocity, direction, and position of each vehicle in a real time manner. In this study, VANETs are introduced for VC and their capabilities, which can be used for the above purpose, are presented from the available literature. To the best of the authors’ knowledge, this is the first study that introduces VANETs for VC purposes. Finally, a comparison is conducted that shows that VANETs outperform the conventional techniques

    Novel Patterning Techniques to Improve Digital Image Correlation in Challenging Environments

    Get PDF
    A camera-based measurement technique called digital image correlation (DIC) is beneficial to measure displacement and strain in challenging environments (such as post-irradiation evaluation and high temperature environments) due to its non-contacting nature and ability to obtain measurements over multiple length scales. This technique requires a surface pattern which influences the measurement resolution and accuracy of the measurements. This thesis explores two novel patterning techniques to allow the use of DIC in more challenging environments: The first is to determine if a pattern created from printed text can be used as a pattern in DIC. Native patterns are patterns already present on an object which have properties which allow them to be used as a DIC pattern, such as contrast. Rigid body translation, rotation, and bending deformation tests are performed on text speckle patterns. The results are compared to a traditional DIC speckle pattern, and it is determined text patterns can serve as DIC speckle patterns when present as a native speckle pattern. The influence of properties of the text speckle patterns such as font and line spacing on the effectiveness of the text speckle pattern are explored. Line spacing has the most significant influence on the effectiveness of using text as a native speckle pattern. Text patterns have low enough uncertainty to obtain accurate measurements, but do not perform as well as traditional DIC speckle patterns. The second details the creation of a multi-colored, multi-scale speckle pattern created for multi-scale DIC measurements. A method is presented for using color cameras to capture images of the multi-scale multi-colored pattern and then splitting the images by color channels of the image in post-processing to obtain multi-scale measurements simultaneously. The images are analyzed using different DIC settings and it is determined the small scale and large-scale measurements have strong agreement. This method has the advantage of the large and small scale full-field data being inherently mapped onto one another as opposed to other multi-scale DIC measurement methods

    Modelling and optimisation of resource usage in an IoT enabled smart campus

    Full text link
    University campuses are essentially a microcosm of a city. They comprise diverse facilities such as residences, sport centres, lecture theatres, parking spaces, and public transport stops. Universities are under constant pressure to improve efficiencies while offering a better experience to various stakeholders including students, staff, and visitors. Nonetheless, anecdotal evidence indicates that campus assets are not being utilized efficiently, often due to the lack of data collection and analysis, thereby limiting the ability to make informed decisions on the allocation and management of resources. Advances in the Internet of Things (IoT) technologies that can sense and communicate data from the physical world, coupled with data analytics and Artificial intelligence (AI) that can predict usage patterns, have opened up new opportunities for organizations to lower cost and improve user experience. This thesis explores this opportunity via theory and experimentation using UNSW Sydney as a living laboratory. The building blocks of this thesis consist of three pillars of execution, namely, IoT deployment, predictive modelling, and optimization. Together, these components create an end-to-end framework that provides informed decisions to estate manager in regards to the optimal allocation of campus resources. The main contributions of this thesis are three application domains, which lies on top of the execution pillars, defining campus resources as classrooms, car parks, and transit buses. Specifically, our contributions are: i) We evaluate several IoT occupancy sensing technologies and instrument 9 lecture halls of varying capacities with the most appropriate sensing solution. The collected data provides us with insights into attendance patterns, such as cancelled lectures and class tests, of over 250 courses. We then develop predictive models using machine learning algorithms and quantile regression technique to predict future attendance patterns. Finally, we propose an intelligent optimisation model that allows allocations of classes to rooms based on the dynamics of predicted attendance as opposed to static enrolment number. We show that the data-driven assignment of classroom resources can achieve a potential saving in room cost of over 10\% over the course of a semester, while incurring a very low risk of disrupting student experience due to classroom overflow; ii) We instrument a car park with IoT sensors for real-time monitoring of parking demand and comprehensively analyse the usage data spanning over 15 months. We then develop machine learning models to forecast future parking demand at multiple forecast horizons ranging from 1 day to 10 weeks, our models achieve a mean absolute error (MAE) of 4.58 cars per hour. Finally, we propose a novel optimal allocation framework that allows campus manager to re-dimension the car park to accommodate new paradigms of car use while minimizing the risk of rejecting users and maintaining a certain level of revenue from the parking infrastructure; iii) We develop sensing technology for measuring an outdoor orderly queue using ultrasonic sensor and LoRaWAN, and deploy the solution at an on campus bus stop. Our solution yields a reasonable accuracy with MAE of 10.7 people for detecting a queue length of up to 100 people. We then develop an optimisation model to reschedule bus dispatch times based on the actual dynamics of passenger demand. The result suggests that a potential wait time reduction of 42.93% can be achieved with demand-driven bus scheduling. Taken together, our contributions demonstrates that there are significant resource efficiency gains to be realised in a smart-campus that employs IoT sensing coupled with predictive modelling and dynamic optimisation algorithms

    Modelling and optimisation of resource usage in an IoT enabled smart campus

    Full text link
    University campuses are essentially a microcosm of a city. They comprise diverse facilities such as residences, sport centres, lecture theatres, parking spaces, and public transport stops. Universities are under constant pressure to improve efficiencies while offering a better experience to various stakeholders including students, staff, and visitors. Nonetheless, anecdotal evidence indicates that campus assets are not being utilized efficiently, often due to the lack of data collection and analysis, thereby limiting the ability to make informed decisions on the allocation and management of resources. Advances in the Internet of Things (IoT) technologies that can sense and communicate data from the physical world, coupled with data analytics and Artificial intelligence (AI) that can predict usage patterns, have opened up new opportunities for organizations to lower cost and improve user experience. This thesis explores this opportunity via theory and experimentation using UNSW Sydney as a living laboratory. The building blocks of this thesis consist of three pillars of execution, namely, IoT deployment, predictive modelling, and optimization. Together, these components create an end-to-end framework that provides informed decisions to estate manager in regards to the optimal allocation of campus resources. The main contributions of this thesis are three application domains, which lies on top of the execution pillars, defining campus resources as classrooms, car parks, and transit buses. Specifically, our contributions are: i) We evaluate several IoT occupancy sensing technologies and instrument 9 lecture halls of varying capacities with the most appropriate sensing solution. The collected data provides us with insights into attendance patterns, such as cancelled lectures and class tests, of over 250 courses. We then develop predictive models using machine learning algorithms and quantile regression technique to predict future attendance patterns. Finally, we propose an intelligent optimisation model that allows allocations of classes to rooms based on the dynamics of predicted attendance as opposed to static enrolment number. We show that the data-driven assignment of classroom resources can achieve a potential saving in room cost of over 10\% over the course of a semester, while incurring a very low risk of disrupting student experience due to classroom overflow; ii) We instrument a car park with IoT sensors for real-time monitoring of parking demand and comprehensively analyse the usage data spanning over 15 months. We then develop machine learning models to forecast future parking demand at multiple forecast horizons ranging from 1 day to 10 weeks, our models achieve a mean absolute error (MAE) of 4.58 cars per hour. Finally, we propose a novel optimal allocation framework that allows campus manager to re-dimension the car park to accommodate new paradigms of car use while minimizing the risk of rejecting users and maintaining a certain level of revenue from the parking infrastructure; iii) We develop sensing technology for measuring an outdoor orderly queue using ultrasonic sensor and LoRaWAN, and deploy the solution at an on campus bus stop. Our solution yields a reasonable accuracy with MAE of 10.7 people for detecting a queue length of up to 100 people. We then develop an optimisation model to reschedule bus dispatch times based on the actual dynamics of passenger demand. The result suggests that a potential wait time reduction of 42.93% can be achieved with demand-driven bus scheduling. Taken together, our contributions demonstrates that there are significant resource efficiency gains to be realised in a smart-campus that employs IoT sensing coupled with predictive modelling and dynamic optimisation algorithms

    ICWIM8 - 8th Conference on Weigh-in-Motion - Book of proceedings

    Get PDF
    ICWIM8, 8th International Conference on Weigh-in-Motion, PRAGUE, TCHÈQUE, RÉPUBLIQUE, 20-/05/2019 - 24/05/2019The conference addresses the broad range of topics related to on-road and in-vehicle WIM technology, its research, installation and operation and use of mass data across variable end-uses. Innovative technologies and experiences of WIM system implementation are presented. Application of WIM data to infrastructure, mainly bridges and pavements, is among the main topics. However, the most demanding application is now WIM for enforcement, and the greatest challenge is WIM for direct enforcement. Most of the countries and road authorities should ensure a full compliance of heavy vehicle weights and dimensions with the current regulations. Another challenging objective is to extend the lifetimes of existing road assets, despite of increasing heavy vehicle loads and flow, and without compromising with the structural safety. Fair competition and road charging also require accurately monitoring commercial vehicle weights by WIM. WIM contributes to a global ITS (Intelligent Transport System) providing useful data on heavy good vehicles to implement Performance Based Standards (PBS) and Intelligent Access Programme (IAP, Australia) or Smart Infrastructure Access Programme (SIAP). The conference reports the latest research and developments since the last conference in 2016, from all around the World. More than 150 delegates from 33 countries and all continents are attending ICWIM8, mixing academics, end users, decision makers and WIM vendors. An industrial exhibition is organized jointly with the conference

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject
    corecore