18,017 research outputs found

    Cell sleeping for energy efficiency in cellular networks: Is it viable?

    Get PDF
    An approach advocated in the recent literature for reducing energy consumption in cellular networks is to put base stations to sleep when traffic loads are low. However, several practical considerations are ignored in these studies. In this paper, we aim to raise questions on the feasibility and benefits of base station sleeping. Specifically we analyze the interference and capacity of a coverage-based energy reduction system in CDMA based cellular networks using a simple analytical model and show that sleeping may not be a feasible solution to reduce energy consumption in many scenarios. © 2012 IEEE

    Energy efficiency in heterogeneous wireless access networks

    Get PDF
    In this article, we bring forward the important aspect of energy savings in wireless access networks. We specifically focus on the energy saving opportunities in the recently evolving heterogeneous networks (HetNets), both Single- RAT and Multi-RAT. Issues such as sleep/wakeup cycles and interference management are discussed for co-channel Single-RAT HetNets. In addition to that, a simulation based study for LTE macro-femto HetNets is presented, indicating the need for dynamic energy efficient resource management schemes. Multi-RAT HetNets also come with challenges such as network integration, combined resource management and network selection. Along with a discussion on these challenges, we also investigate the performance of the conventional WLAN-first network selection mechanism in terms of energy efficiency (EE) and suggest that EE can be improved by the application of intelligent call admission control policies

    Spectral Efficient and Energy Aware Clustering in Cellular Networks

    Full text link
    The current and envisaged increase of cellular traffic poses new challenges to Mobile Network Operators (MNO), who must densify their Radio Access Networks (RAN) while maintaining low Capital Expenditure and Operational Expenditure to ensure long-term sustainability. In this context, this paper analyses optimal clustering solutions based on Device-to-Device (D2D) communications to mitigate partially or completely the need for MNOs to carry out extremely dense RAN deployments. Specifically, a low complexity algorithm that enables the creation of spectral efficient clusters among users from different cells, denoted as enhanced Clustering Optimization for Resources' Efficiency (eCORE) is presented. Due to the imbalance between uplink and downlink traffic, a complementary algorithm, known as Clustering algorithm for Load Balancing (CaLB), is also proposed to create non-spectral efficient clusters when they result in a capacity increase. Finally, in order to alleviate the energy overconsumption suffered by cluster heads, the Clustering Energy Efficient algorithm (CEEa) is also designed to manage the trade-off between the capacity enhancement and the early battery drain of some users. Results show that the proposed algorithms increase the network capacity and outperform existing solutions, while, at the same time, CEEa is able to handle the cluster heads energy overconsumption
    corecore