10,920 research outputs found

    Impact of Correlated Mobility on Delay-Throughput Performance in Mobile Ad-Hoc Networks

    Get PDF
    Abstract—We extend the analysis of the scaling laws of wireless ad hoc networks to the case of correlated nodes movements, which are commonly found in real mobility processes. We consider a simple version of the Reference Point Group Mobility model, in which nodes belonging to the same group are constrained to lie in a disc area, whose center moves uniformly across the network according to the i.i.d. model. We assume fast mobility conditions, and take as primary goal the maximization of pernode throughput. We discover that correlated node movements have huge impact on asymptotic throughput and delay, and can sometimes lead to better performance than the one achievable under independent nodes movements. I. INTRODUCTION AND RELATED WORK In the last few years the store-carry-forward communication paradigm, which allows nodes to physically carry buffered dat

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Performance analysis of MANET routing protocols in the presence of self-similar traffic

    Get PDF
    A number of measurement studies have convincingly demonstrated that network traffic can exhibit a noticeable self-similar nature, which has a considerable impact on queuing performance. However, many routing protocols developed for MANETs over the past few years have been primarily designed and analyzed under the assumptions of either CBR or Poisson traffic models, which are inherently unable to capture traffic self-similarity. It is crucial to re-examine the performance properties of MANETs in the context of more realistic traffic models before practical implementation show their potential performance limitations. In an effort towards this end, this paper evaluates the performance of three well-known and widely investigated MANET routing protocols, notably DSR, AODV and OLSR, in the presence of the bursty self-similar traffic. Different performance aspects are investigated including, delivery ratio, routing overhead, throughput and end-to-end delay. Our simulation results indicate that DSR routing protocol performs well with bursty traffic models compared to AODV and OLSR in terms of delivery ratio, throughput and end-to-end delay. On the other hand, OLSR performed poorly in the presence of self-similar traffic at high mobility especially in terms of data packet delivery ratio, routing overhead and delay. As for AODV routing protocol, the results show an average performance, yet a remarkably low and stable end-to-end delay

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201
    • …
    corecore