4 research outputs found

    Towards expert-inspired automatic criterion to cut a dendrogram for real-industrial applications

    Get PDF
    Hierarchical clustering is one of the most preferred choices to understand the underlying structure of a dataset and defining typologies, with multiple applications in real life. Among the existing clustering algorithms, the hierarchical family is one of the most popular, as it permits to understand the inner structure of the dataset and find the number of clusters as an output, unlike popular methods, like k-means. One can adjust the granularity of final clustering to the goals of the analysis themselves. The number of clusters in a hierarchical method relies on the analysis of the resulting dendrogram itself. Experts have criteria to visually inspect the dendrogram and determine the number of clusters. Finding automatic criteria to imitate experts in this task is still an open problem. But, dependence on the expert to cut the tree represents a limitation in real applications like the fields industry 4.0 and additive manufacturing. This paper analyses several cluster validity indexes in the context of determining the suitable number of clusters in hierarchical clustering. A new Cluster Validity Index (CVI) is proposed such that it properly catches the implicit criteria used by experts when analyzing dendrograms. The proposal has been applied on a range of datasets and validated against experts ground-truth overcoming the results obtained by the State of the Art and also significantly reduces the computational cost .Peer ReviewedPostprint (published version

    Bootstrap–CURE: A novel clustering approach for sensor data: an application to 3D printing industry

    Get PDF
    The agenda of Industry 4.0 highlights smart manufacturing by making machines smart enough to make data-driven decisions. Large-scale 3D printers, being one of the important pillars in Industry 4.0, are equipped with smart sensors to continuously monitor print processes and make automated decisions. One of the biggest challenges in decision autonomy is to consume data quickly along the process and extract knowledge from the printer, suitable for improving the printing process. This paper presents the innovative unsupervised learning approach, bootstrap–CURE, to decode the sensor patterns and operation modes of 3D printers by analyzing multivariate sensor data. An automatic technique to detect the suitable number of clusters using the dendrogram is developed. The proposed methodology is scalable and significantly reduces computational cost as compared to classical CURE. A distinct combination of the 3D printer’s sensors is found, and its impact on the printing process is also discussed. A real application is presented to illustrate the performance and usefulness of the proposal. In addition, a new state of the art for sensor data analysis is presented.This work was supported in part by KEMLG-at-IDEAI (UPC) under Grant SGR-2017-574 from the Catalan government.Peer ReviewedPostprint (published version

    Introducing semantic variables in mixed distance measures: Impact on hierarchical clustering

    No full text
    Today, it is well known that taking into account the semantic information available for categorical variables sensibly improves the meaningfulness of the final results of any analysis. The paper presents a generalization of mixed Gibert's metrics, which originally handled numerical and categorical variables, to include also semantic variables. Semantic variables are defined as categorical variables related to a reference ontology (ontologies are formal structures to model semantic relationships between the concepts of a certain domain). The superconcept-based distance (SCD) is introduced to compare semantic variables taking into account the information provided by the reference ontology. A benchmark shows the good performance of SCD with respect to other proposals, taken from the literature, to compare semantic features. Mixed Gibert's metrics is generalized incorporating SCD. Finally, two real applications based on touristic data show the impact of the generalized Gibert's metrics in clustering procedures and, in consequence, the impact of taking into account the reference ontology in clustering. The main conclusion is that the reference ontology, when available, can sensibly improve the meaningfulness of the final clusters.Peer ReviewedPostprint (published version

    Women in Artificial intelligence (AI)

    Get PDF
    This Special Issue, entitled "Women in Artificial Intelligence" includes 17 papers from leading women scientists. The papers cover a broad scope of research areas within Artificial Intelligence, including machine learning, perception, reasoning or planning, among others. The papers have applications to relevant fields, such as human health, finance, or education. It is worth noting that the Issue includes three papers that deal with different aspects of gender bias in Artificial Intelligence. All the papers have a woman as the first author. We can proudly say that these women are from countries worldwide, such as France, Czech Republic, United Kingdom, Australia, Bangladesh, Yemen, Romania, India, Cuba, Bangladesh and Spain. In conclusion, apart from its intrinsic scientific value as a Special Issue, combining interesting research works, this Special Issue intends to increase the invisibility of women in AI, showing where they are, what they do, and how they contribute to developments in Artificial Intelligence from their different places, positions, research branches and application fields. We planned to issue this book on the on Ada Lovelace Day (11/10/2022), a date internationally dedicated to the first computer programmer, a woman who had to fight the gender difficulties of her times, in the XIX century. We also thank the publisher for making this possible, thus allowing for this book to become a part of the international activities dedicated to celebrating the value of women in ICT all over the world. With this book, we want to pay homage to all the women that contributed over the years to the field of AI
    corecore