19,845 research outputs found

    Real-Time Local Volt/VAR Control Under External Disturbances with High PV Penetration

    Full text link
    Volt/var control (VVC) of smart PV inverter is becoming one of the most popular solutions to address the voltage challenges associated with high PV penetration. This work focuses on the local droop VVC recommended by the grid integration standards IEEE1547, rule21 and addresses their major challenges i.e. appropriate parameters selection under changing conditions, and the control being vulnerable to instability (or voltage oscillations) and significant steady state error (SSE). This is achieved by proposing a two-layer local real-time adaptive VVC that has two major features i.e. a) it is able to ensure both low SSE and control stability simultaneously without compromising either, and b) it dynamically adapts its parameters to ensure good performance in a wide range of external disturbances such as sudden cloud cover, cloud intermittency, and substation voltage changes. A theoretical analysis and convergence proof of the proposed control is also discussed. The proposed control is implementation friendly as it fits well within the integration standard framework and depends only on the local bus information. The performance is compared with the existing droop VVC methods in several scenarios on a large unbalanced 3-phase feeder with detailed secondary side modeling.Comment: IEEE Transactions on Smart Grid, 201

    Reducing Voltage Volatility with Step Voltage Regulators: A Life-Cycle Cost Analysis of Korean Solar Photovoltaic Distributed Generation

    Get PDF
    To meet the United Nation’s sustainable development energy goal, the Korean Ministry of Commerce announced they would increase renewable energy generation to 5.3% by 2029. These energy sources are often produced in small-scale power plants located close to the end users, known as distributed generation (DG). The use of DG is an excellent way to reduce greenhouse gases but has also been found to reduce power quality and safety reliability through an increase in voltage volatility. This paper performs a life-cycle cost analysis on the use of step voltage regulators (SVR) to reduce said volatility, simulating the impact they have on existing Korean solar photovoltaic (PV) DG. From the data collected on a Korean Electrical Power Corporation 30 km/8.2 megawatts (MW) feeder system, SVRs were found to increase earnings by one million USD. SVR volatile voltage mitigation increased expected earnings by increasing the estimated allowable PV power generation by 2.7 MW. While this study is based on Korean PV power generation, its findings are applicable to any DG sources worldwide.11Nsciescopu

    Time-Series Analysis of Photovoltaic Distributed Generation Impacts on a Local Distributed Network

    Full text link
    Increasing penetration level of photovoltaic (PV) distributed generation (DG) into distribution networks will have many impacts on nominal circuit operating conditions including voltage quality and reverse power flow issues. In U.S. most studies on PVDG impacts on distribution networks are performed for west coast and central states. The objective of this paper is to study the impacts of PVDG integration on local distribution network based on real-world settings for network parameters and time-series analysis. PVDG penetration level is considered to find the hosting capacity of the network without having major issues in terms of voltage quality and reverse power flow. Time-series analyses show that distributed installation of PVDGs on commercial buses has the maximum network energy loss reduction and larger penetration ratios for them. Additionally, the penetration ratio thresholds for which there will be no power quality and reverse power flow issues and optimal allocation of PVDG and penetration levels are identified for different installation scenarios.Comment: To be published (Accepted) in: 12th IEEE PES PowerTech Conference, Manchester, UK, 201

    Impact of hybrid renewable energy systems on short circuit levels in distribution networks

    Get PDF
    The effects of the distributed generation can be classified as environmental, technical and economical effects. It is playing a very vital role for improving the voltage profiles in electrical power systems. However, it could have some negative impacts such as operating conflicts for fault clearing and interference with relaying. Distribution system is the link between the utility system and the consumer. It is divided into three categories radial, Loop, and network. Distribution networks are the most commonly used to cover huge number of loads. The power system reliability mainly depends on the smooth operation and continuity of supply of the distribution network. However, this may not always be guaranteed especially with the introduction of distributed generation to the distribution network. This paper will examine the impact of hybrid renewable energy systems (using photovoltaic and doubly fed induction generators) on short circuit level of IEEE 13-bus distribution test system using ETAP software
    corecore