5 research outputs found

    An Open Source Cyberinfrastructure for Collecting, Processing, Storing and Accessing High Temporal Resolution Residential Water Use Data

    Get PDF
    Collecting and managing high temporal resolution residential water use data is challenging due to cost and technical requirements associated with the volume and velocity of data collected. We developed an open-source, modular, generalized architecture called Cyberinfrastructure for Intelligent Water Supply (CIWS) to automate the process from data collection to analysis and presentation of high temporal residential water use data. A prototype implementation was built using existing open-source technologies, including smart meters, databases, and services. Two case studies were selected to test functionalities of CIWS, including push and pull data models within single family and multi-unit residential contexts, respectively. CIWS was tested for scalability and performance within our design constraints and proved to be effective within both case studies. All CIWS elements and the case study data described are freely available for re-use

    Advancing Data Collection, Management, and Analysis for Quantifying Residential Water Use via Low Cost, Open Source, Smart Metering Infrastructure

    Get PDF
    Urbanization, climate change, aging infrastructure, and the cost of delivering water to residential customers make it vital that we achieve a higher efficiency in the management of urban water resources. Understanding how water is used at the household level is vital for this objective.Water meters measure water use for billing purposes, commonly at a monthly, or coarser temporal resolutions. This is insufficient to understand where water is used (i.e., the distribution of water use across different fixtures like toilets, showers, outdoor irrigation), when water is used (i.e., identifying peaks of consumption, instantaneous or at hourly, daily, weekly intervals), the efficiency of water using fixtures, or water use behaviors across different households. Most smart meters available today are not capable of collecting data at the temporal resolutions needed to fully characterize residential water use, and managing this data represents a challenge given the rapidly increasing volume of data generated. The research in this dissertation presents low cost, open source cyberinfrastructure (datalogging and data management systems) to collect and manage high temporal resolution, residential water use data. Performance testing of the cyberinfrastructure demonstrated the scalability of the system to multiple hundreds of simultaneous data collection devices. Using this cyberinfrastructure, we conducted a case study application in the cities of Logan and Providence, Utah where we found significant variability in the temporal distribution, timing, and volumes of indoor water use. This variability can impact the design of water conservation programs, estimations and forecast of water demand, and sizing of future water infrastructure. Outdoor water use was the largest component of residential water use, yet homeowners were not significantly overwatering their landscapes. Opportunities to improve the efficiency of water using fixtures and to conserve water by promoting behavior changes exist among participants

    Development of a supervisory internet of things (IoT) system for factories of the future

    Full text link
    Big data is of great importance to stakeholders, including manufacturers, business partners, consumers, government. It leads to many benefits, including improving productivity and reducing the cost of products by using digitalised automation equipment and manufacturing information systems. Some other benefits include using social media to build the agile cooperation between suppliers and retailers, product designers and production engineers, timely tracking customers’ feedbacks, reducing environmental impacts by using Internet of Things (IoT) sensors to monitor energy consumption and noise level. However, manufacturing big data integration has been neglected. Many open-source big data software provides complicated capabilities to manage big data software for various data-driven applications for manufacturing. In this research, a manufacturing big data integration system, named as Data Control Module (DCM) has been designed and developed. The system can securely integrate data silos from various manufacturing systems and control the data for different manufacturing applications. Firstly, the architecture of manufacturing big data system has been proposed, including three parts: manufacturing data source, manufacturing big data ecosystem and manufacturing applications. Secondly, nine essential components have been identified in the big data ecosystem to build various manufacturing big data solutions. Thirdly, a conceptual framework is proposed based on the big data ecosystem for the aim of DCM. Moreover, the DCM has been designed and developed with the selected big data software to integrate all the three varieties of manufacturing data, including non-structured, semi-structured and structured. The DCM has been validated on three general manufacturing domains, including product design and development, production and business. The DCM cannot only be used for the legacy manufacturing software but may also be used in emerging areas such as digital twin and digital thread. The limitations of DCM have been analysed, and further research directions have also been discussed

    A Multi-Stakeholder Information Model to Drive Process Connectivity In Smart Buildings

    Get PDF
    Smart buildings utilise IoT technology to provide stakeholders with efficient, comfortable, and secure experiences. However, previous studies have primarily focused on the technical aspects of it and how it can address specific stakeholder requirements. This study adopts socio-technical theory principles to propose a model that addresses stakeholders' needs by considering the interrelationship between social and technical subsystems. A systematic literature review and thematic analysis of 43 IoT conceptual frameworks for smart building studies informed the design of a comprehensive conceptual model and IoT framework for smart buildings. The study's findings suggest that addressing stakeholder requirements is essential for developing an information model in smart buildings. A multi-stakeholder information model integrating multiple stakeholders' perspectives enhances information sharing and improves process connectivity between various systems and subsystems. The socio-technical systems framework emphasises the importance of considering technical and social aspects while integrating smart building systems for seamless operation and effectiveness. The study's findings have significant implications for enhancing stakeholders' experience and improving operational efficiency in commercial buildings. The insights from the study can inform smart building systems design to consider all stakeholder requirements holistically, promoting process connectivity in smart buildings. The literature analysis contributed to developing a comprehensive IoT framework, addressing the need for holistic thinking when proposing IoT frameworks for smart buildings by considering different stakeholders in the building
    corecore