5,082 research outputs found

    Enhanced genetic algorithm-based fuzzy multiobjective strategy to multiproduct batch plant design

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands in product amounts. The design of such plants necessary involves how equipment may be utilized, which means that plant scheduling and production must constitute a basic part of the design problem. Rather than resorting to a traditional probabilistic approach for modeling the imprecision on product demands, this work proposes an alternative treatment by using fuzzy concepts. The design problem is tackled by introducing a new approach based on a multiobjective genetic algorithm, combined wit the fuzzy set theory for computing the objectives as fuzzy quantities. The problem takes into account simultaneous maximization of the fuzzy net present value and of two other performance criteria, i.e. the production delay/advance and a flexibility index. The delay/advance objective is computed by comparing the fuzzy production time for the products to a given fuzzy time horizon, and the flexibility index represents the additional fuzzy production that the plant would be able to produce. The multiobjective optimization provides the Pareto's front which is a set of scenarios that are helpful for guiding the decision's maker in its final choices. About the solution procedure, a genetic algorithm was implemented since it is particularly well-suited to take into account the arithmetic of fuzzy numbers. Furthermore because a genetic algorithm is working on populations of potential solutions, this type of procedure is well adapted for multiobjective optimization

    Theory and Applications of Robust Optimization

    Full text link
    In this paper we survey the primary research, both theoretical and applied, in the area of Robust Optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multi-stage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.Comment: 50 page

    Complexity results and exact algorithms for robust knapsack problems.

    Get PDF
    This paper studies the robust knapsack problem, for which solutions are, up to a certain point, immune to data uncertainty. We complement the works found in the literature where uncertainty affects only the profits or only the weights of the items by studying the complexity and approximation of the general setting with uncertainty regarding both the profits and the weights, for three different objective functions. Furthermore, we develop a scenario-relaxation algorithm for solving the general problem and present computational results.Knapsack problem; Robustness; Scenario-relaxation algorithm; NP-hard; Approximation;

    Robust Short-term Operation of AC Power Network with Injection Uncertainties

    Full text link
    With uncertain injections from Renewable Energy Sources (RESs) and loads, deterministic AC Optimal Power Flow (OPF) often fails to provide optimal setpoints of conventional generators. A computationally time-efficient, economical, and robust solution is essential for ACOPF with short-term injection uncertainties. Usually, applying Robust Optimization (RO) for conventional non-linear ACOPF results in computationally intractable Robust Counterpart (RC), which is undesirable as ACOPF is an operational problem. Hence, this paper proposes a single-stage non-integer non-recursive RC of ACOPF, using a dual transformation, for short-term injection uncertainties. The proposed RC is convex, tractable, and provides base-point active power generations and terminal voltage magnitudes (setpoints) of conventional generators that satisfy all constraints for all realizations of defined injection uncertainties. The non-linear impact of uncertainties on other variables is inherently modeled without using any affine policy. The proposed approach also includes the budget of uncertainty constraints for low conservatism of the obtained setpoints. Monte-Carlo Simulation (MCS) based participation factored AC power flows validate the robustness of the obtained setpoints on NESTA and case9241pegase systems for different injection uncertainties. Comparison with previous approaches indicates the efficacy of the proposed approach in terms of low operational cost and computation time.Comment: 16 pages, 5 figures, 5 table
    corecore