223 research outputs found

    Detection of Sensor Attack and Resilient State Estimation for Uniformly Observable Nonlinear Systems having Redundant Sensors

    Full text link
    This paper presents a detection algorithm for sensor attacks and a resilient state estimation scheme for a class of uniformly observable nonlinear systems. An adversary is supposed to corrupt a subset of sensors with the possibly unbounded signals, while the system has sensor redundancy. We design an individual high-gain observer for each measurement output so that only the observable portion of the system state is obtained. Then, a nonlinear error correcting problem is solved by collecting all the information from those partial observers and exploiting redundancy. A computationally efficient, on-line monitoring scheme is presented for attack detection. Based on the attack detection scheme, an algorithm for resilient state estimation is provided. The simulation results demonstrate the effectiveness of the proposed algorithm

    A Multi-Observer Based Estimation Framework for Nonlinear Systems under Sensor Attacks

    Full text link
    We address the problem of state estimation and attack isolation for general discrete-time nonlinear systems when sensors are corrupted by (potentially unbounded) attack signals. For a large class of nonlinear plants and observers, we provide a general estimation scheme, built around the idea of sensor redundancy and multi-observer, capable of reconstructing the system state in spite of sensor attacks and noise. This scheme has been proposed by others for linear systems/observers and here we propose a unifying framework for a much larger class of nonlinear systems/observers. Using the proposed estimator, we provide an isolation algorithm to pinpoint attacks on sensors during sliding time windows. Simulation results are presented to illustrate the performance of our tools.Comment: arXiv admin note: text overlap with arXiv:1806.0648

    The observer error linearization problem via dynamic compensation

    Get PDF
    Linearization by output injection has played a key role in the observer design for nonlinear control systems for almost three decades. In this technical note, following some recent works, geometric necessary and sufficient conditions are derived for the existence of a dynamic compensator solving the problem under regular output transformation. An algorithm which computes a compensator of minimal order is given. ยฉ 2014 IEEE

    ์ถ•์†Œ ์ฐจ์› ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™”์™€ ํ™•์žฅ๋œ ๋น„์„ ํ˜• ๊ด€์ธก๊ธฐ ์ •์ค€ํ˜•์„ ํ†ตํ•œ ๋น„์„ ํ˜• ๊ด€์ธก๊ธฐ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 8. ์„œ์ง„ํ—Œ.๋ณธ ๋…ผ๋ฌธ์€ ๋น„์„ ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ด€์ธก๊ธฐ ์„ค๊ณ„ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ๊ด€์ธก๊ธฐ ์„ค๊ณ„ ๋ฌธ์ œ๋ž€ ์ฃผ์–ด์ง„ ์‹œ์Šคํ…œ์˜ ์ž…๋ ฅ๊ณผ ์ถœ๋ ฅ ์ •๋ณด๋งŒ์„ ํ™œ์šฉํ•˜์—ฌ ๋Œ€์ƒ ์‹œ์Šคํ…œ์˜ ์ƒํƒœ ๋ณ€์ˆ˜๋ฅผ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์„ ํ˜• ์‹œ์Šคํ…œ์˜ ๊ฒฝ์šฐ์—๋Š” ๋ฃจ์—”๋ฒ„๊ฑฐ ๊ด€์ธก๊ธฐ(Luenberger observer)๋กœ ์•Œ๋ ค์ง„ ์ผ๋ฐ˜์ ์ธ ํ•ด๋ฒ•์ด ์กด์žฌํ•˜๋Š” ๋ฐ˜๋ฉด, ์ผ๋ฐ˜์ ์ธ ๋น„์„ ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด ๊ด€์ธก๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ํ˜„์žฌ๊นŒ์ง€ ๋ณด๊ณ ๋œ ๋ฐ”๊ฐ€ ์—†๋‹ค. ๋‹ค๋งŒ, ํŠน์ •ํ•œ ํ˜•ํƒœ์˜ ๋น„์„ ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด ๊ด€์ธก๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ํ™œ๋ฐœํ•˜๊ฒŒ ์ง„ํ–‰๋˜์–ด ์˜ค๊ณ  ์žˆ๋‹ค. ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™”(observer error linearization) ๊ธฐ๋ฒ•์€ ์ด ๋ฌธ์ œ์— ๋Œ€ํ•œ ๊ฐ€์žฅ ์ž˜ ์•Œ๋ ค์ง„ ๋ฐฉ๋ฒ•๋ก  ์ค‘์˜ ํ•˜๋‚˜๋กœ์„œ, ์ฃผ์–ด์ง„ ๋น„์„ ํ˜• ์‹œ์Šคํ…œ์„ ์ขŒํ‘œ ๋ณ€ํ™˜์„ ํ†ตํ•ด ๊ด€์ธก ๊ฐ€๋Šฅํ•œ ์„ ํ˜• ์‹œ์Šคํ…œ๊ณผ ์ถœ๋ ฅ์ฃผ์ž…(output injection) ๋ถ€๋ถ„๋“ค๋กœ ๊ตฌ์„ฑ๋œ ๋น„์„ ํ˜• ๊ด€์ธก๊ธฐ ์ •์ค€ํ˜•(nonlinear observer canonical form)์œผ๋กœ ๋ณ€ํ™˜์‹œํ‚ค๋Š” ๋ฌธ์ œ์ด๋‹ค. ๋น„์„ ํ˜• ๊ด€์ธก๊ธฐ ์ •์ค€ํ˜•์œผ๋กœ ๋ณ€ํ™˜ ๊ฐ€๋Šฅํ•œ ์ขŒํ‘œ๊ณ„์—์„œ๋Š” ์‹œ์Šคํ…œ์˜ ๋ชจ๋“  ๋น„์„ ํ˜•์„ฑ์ด ์‹œ์Šคํ…œ์˜ ์ž…๋ ฅ๊ณผ ์ถœ๋ ฅ์˜ ํ•จ์ˆ˜๋กœ ์ด๋ฃจ์–ด์ง„ ์ถœ๋ ฅ ์ฃผ์ž… ๋ถ€๋ถ„์— ์ œํ•œ๋˜๋ฏ€๋กœ, ์ด๋ฅผ ์ƒ์‡„์‹œํ‚ด์œผ๋กœ์จ ์„ ํ˜• ์‹œ์Šคํ…œ์˜ ๊ฒฝ์šฐ์™€ ๋น„์Šทํ•œ ํ˜•ํƒœ์˜ ๋ฃจ์—”๋ฒ„๊ฑฐํ˜•์˜ ๊ด€์ธก๊ธฐ(Luenberger-type observer)๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๊ณ , ์ด์— ๋”ฐ๋ผ ์„ ํ˜•ํ™”๋œ ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ๋™์—ญํ•™(observer error dynamics)์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์˜ ์ถœํ˜„ ์ด๋ž˜๋กœ, ์ด๋ฅผ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์Šคํ…œ์˜ ๋ฒ”์œ„๋ฅผ ํ™•์žฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด ์™”๋‹ค. ๊ทธ ์ค‘ ํ•˜๋‚˜๋Š” ์ฃผ์–ด์ง„ ์‹œ์Šคํ…œ์„ ๋ณด๋‹ค ๋†’์€ ์ฐจ์ˆ˜์˜ ๋น„์„ ํ˜• ๊ด€์ธก๊ธฐ ์ •์ค€ํ˜•์œผ๋กœ ๋ณ€ํ™˜์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์—๋Š” ์‹œ์Šคํ…œ ์ด๋จธ์ ผ ๊ธฐ๋ฒ•๊ณผ ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™”(dynamic observer error linearization) ๊ธฐ๋ฒ•์ด ์žˆ๋Š”๋ฐ, ๊ทธ ์ค‘์—์„œ๋„ ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์˜ ํŠน์ง•์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€๋กœ ์š”์•ฝ๋  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ์งธ๋Š” ๋Œ€์ƒ ์‹œ์Šคํ…œ์˜ ์ถœ๋ ฅ์„ ์ž…๋ ฅ์œผ๋กœ ํ•˜๋Š” ๋ณด์กฐ ๋™์—ญํ•™(auxiliary dynamics)์„ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด๊ณ , ๋‘˜์งธ๋Š” ๋ณด์กฐ ๋™์—ญํ•™์„ ํฌํ•จํ•˜๋Š” ํ™•์žฅ๋œ ์‹œ์Šคํ…œ์„ ๋Œ€์ƒ ์‹œ์Šคํ…œ๋ณด๋‹ค ๋†’์€ ์ฐจ์ˆ˜์˜ ์ผ๋ฐ˜ํ™”๋œ ๋น„์„ ํ˜• ๊ด€์ธก๊ธฐ ์ •์ค€ํ˜•(generalized nonlinear observer canonical form)์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์—์„œ ์ œ์•ˆ๋œ ์ผ๋ฐ˜ํ™”๋œ ๋น„์„ ํ˜• ๊ด€์ธก๊ธฐ ์ •์ค€ํ˜•์€ ๊ด€์ธก ๊ฐ€๋Šฅํ•œ ์„ ํ˜• ์‹œ์Šคํ…œ๊ณผ ์ผ๋ฐ˜ํ™”๋œ ์ถœ๋ ฅ ์ฃผ์ž…(generalized output injection)์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๊ณ , ์ผ๋ฐ˜ํ™”๋œ ์ถœ๋ ฅ ์ฃผ์ž…์€ ๋Œ€์ƒ ์‹œ์Šคํ…œ์˜ ์ถœ๋ ฅ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ณด์กฐ๋™์—ญํ•™์˜ ์ƒํƒœ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ํ•จ์ˆ˜๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ๋‹ค๋Š” ์ฐจ์ด์ ์ด ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ด ๋ฐฉ๋ฒ•๋ก ์€ ๊ด€์ธก๊ธฐ์˜ ์ฐจ์ˆ˜๊ฐ€ ๋Œ€์ƒ ์‹œ์Šคํ…œ์˜ ์ฐจ์ˆ˜๋ณด๋‹ค ํฌ๋‹ค๋Š” ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ์ตœ๊ทผ์—๋Š” ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™”์˜ ๋ณ€ํ˜•๋œ ๊ธฐ๋ฒ•์œผ๋กœ์„œ ์ถ•์†Œ ์ฐจ์› ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™”(reduced-order dynamic observer error linearization)๋ž€ ๊ธฐ๋ฒ•์ด ๋‹จ์ผ ์ถœ๋ ฅ ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ถ•์†Œ ์ฐจ์› ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ• ์—ญ์‹œ ๋ณด์กฐ ๋™์—ญํ•™์„ ์„ค๊ณ„ํ•˜์—ฌ ํ™•์žฅ๋œ ์‹œ์Šคํ…œ์„ ์ผ๋ฐ˜ํ™”๋œ ๋น„์„ ํ˜• ๊ด€์ธก๊ธฐ ์ •์ค€ํ˜•์œผ๋กœ ๋ณ€ํ™˜์‹œํ‚จ๋‹ค๋Š” ์ ์—์„œ ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•๊ณผ ๊ณตํ†ต์ ์„ ๊ฐ–์ง€๋งŒ, ๋ณ€ํ™˜๋œ ์ผ๋ฐ˜ํ™”๋œ ๋น„์„ ํ˜• ๊ด€์ธก๊ธฐ ์ •์ค€ํ˜•์˜ ์ฐจ์ˆ˜๊ฐ€ ๋Œ€์ƒ ์‹œ์Šคํ…œ์˜ ์ฐจ์ˆ˜์™€ ๊ฐ™๋‹ค๋Š” ์ฐจ์ด์ ์ด ์žˆ๋‹ค. ๋น„๋ก ์ถ•์†Œ ์ฐจ์› ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์ด ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์˜ ๋ฒ”์ฃผ๋Š” ๋™์  ๊ด€์ธก๊ธฐ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์ด ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ ๋ฒ”์ฃผ๋ฅผ ๋ฒ—์–ด๋‚  ์ˆ˜๋Š” ์—†์ง€๋งŒ, ์ถ•์†Œ ์ฐจ์› ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์€ ๋™์  ๊ด€์ธก๊ธฐ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์— ๋น„ํ•ด ๋” ์ž‘์€ ์ฐจ์ˆ˜์˜ ๊ด€์ธก๊ธฐ๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ด์ ์ด ์žˆ๊ณ , ๋ณด์กฐ ๋™์—ญํ•™์˜ ๊ฐœ๋…์„ ๋„์ž…ํ•จ์œผ๋กœ์จ ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์— ๋น„ํ•ด ๋” ๋„“์€ ๋ฒ”์ฃผ์˜ ์‹œ์Šคํ…œ์— ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์„ ์ง€๋‹Œ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ถ•์†Œ ์ฐจ์› ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์˜ ๊ฐœ๋… ์ž์ฒด๊ฐ€ ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์˜ ๊ฐœ๋…๊ณผ ๋งค์šฐ ํก์‚ฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— (๋ณด์กฐ ๋™์—ญํ•™์„ ๊ณ ๋ คํ•˜์ง€ ์•Š์€ ์ถ•์†Œ ์ฐจ์› ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๋ฌธ์ œ๋Š” ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๋ฌธ์ œ์™€ ์ผ์น˜ํ•œ๋‹ค.) ์ถ•์†Œ ์ฐจ์› ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๊ธฐ์กด์˜ ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์„ ํ•ด์„ํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ถ•์†Œ ์ฐจ์› ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์„ ๋‹ค์ค‘ ์ถœ๋ ฅ ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด ํ™•์žฅ์‹œํ‚ค๊ณ , ์ด์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ ๊ถ๊ทน์ ์œผ๋กœ๋Š” ์ฃผ์–ด์ง„ ๋‹ค์ค‘ ์ถœ๋ ฅ ์‹œ์Šคํ…œ์ด ์ด ๊ธฐ๋ฒ•์— ์˜ํ•ด ์ผ๋ฐ˜ํ™”๋œ ๋น„์„ ํ˜• ๊ด€์ธก๊ธฐ ์ •์ค€ํ˜•์œผ๋กœ ๋ณ€ํ™˜๋  ์ˆ˜ ์žˆ๋Š” ํ•„์š”์ถฉ๋ถ„ ์กฐ๊ฑด์„ ์ œ์‹œํ•œ๋‹ค. ์ด ๊ฒฐ๊ณผ๋Š” ํ˜„์žฌ๊นŒ์ง€ ํ™•๋ฆฝ๋˜์ง€ ์•Š์•˜๋˜ ์ผ๋ฐ˜์ ์ธ ํ˜•ํƒœ์˜ ์ถœ๋ ฅ ๋ณ€ํ™˜๊นŒ์ง€ ๊ณ ๋ คํ•˜์˜€์„ ๊ฒฝ์šฐ์˜ ๋‹ค์ค‘ ์ถœ๋ ฅ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™” ๋ฌธ์ œ์˜ ํ•„์š”์ถฉ๋ถ„ ์กฐ๊ฑด์„ ๋‚ดํฌํ•˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„์„ ํ˜• ๊ด€์ธก๊ธฐ ์ •์ค€ํ˜•์˜ ์„ ํ˜• ๋ถ€๋ถ„ ๋˜ํ•œ ์‹œ์Šคํ…œ์˜ ์ถœ๋ ฅ๊ณผ ๋ณด์กฐ ๋™์—ญํ•™์˜ ์ƒํƒœ ๋ณ€์ˆ˜์— ์˜ํ•ด ๊ฒฐ์ •๋˜๋Š” ํ™•์žฅ๋œ ๋น„์„ ํ˜• ๊ด€์ธก๊ธฐ ์ •์ค€ํ˜•(extended nonlinear observer canonical form)์„ ์ œ์•ˆํ•˜๊ณ , ์ถ•์†Œ ์ฐจ์› ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™”์˜ ํ™•์žฅ๋œ ๊ธฐ๋ฒ•์œผ๋กœ์„œ ์ฃผ์–ด์ง„ ๋‹จ์ผ ์ถœ๋ ฅ ์‹œ์Šคํ…œ์„ ๋ณด์กฐ ๋™์—ญํ•™์„ ์„ค๊ณ„ํ•˜์—ฌ ํ™•์žฅ๋œ ๋น„์„ ํ˜• ๊ด€์ธก๊ธฐ ์ •์ค€ํ˜•์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์ œ์•ˆํ•˜๊ณ  ์ด์— ๋Œ€ํ•œ ํ•„์š”์ถฉ๋ถ„ ์กฐ๊ฑด์„ ์ œ์‹œํ•œ๋‹ค. ๋˜ํ•œ ์ด ๊ฒฐ๊ณผ๋ฅผ ๋ขฐ์Šฌ๋Ÿฌ ์‹œ์Šคํ…œ(Rossler system)์— ์ ์šฉ์‹œ์ผœ๋ด„์œผ๋กœ์จ ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์ด ์ถ•์†Œ ์ฐจ์› ๋™์  ๊ด€์ธก๊ธฐ ์˜ค์ฐจ ์„ ํ˜•ํ™”์— ๋น„ํ•ด ๋” ๋„“์€ ๋ฒ”์ฃผ์˜ ์‹œ์Šคํ…œ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ์˜ˆ์ฆํ•œ๋‹ค.This dissertation contributes to the observer design problem for some classes of nonlinear systems. The observer design problem is to construct a dynamic system (called observer) that can estimate the state of a given dynamic system by using available signals which are commonly the input and the output of the given system. While a standard solution (called Luenberger observer) to the problem was solved for linear systems, there has not been a unified solution for general nonlinear systems. However, there have been significant research efforts on the problem of designing observers for special classes of nonlinear systems. Observer error linearization (OEL) is one of the well-known methods, and it is the problem of transforming a nonlinear system into a nonlinear observer canonical form (NOCF) that is an observable linear system modulo output injection. If a nonlinear system can be transformed into the NOCF, then all the nonlinearities of the system are restricted to the output injection term which is a vector-valued function of the system input and the system output. As a result, we can design a Luenberger-type observer that cancels out the output injection and thus has a linear observer error dynamics in the transformed coordinates. In order to extend the class of systems to which the OEL approach is applicable, a lot of attempts have been made in the past three decades. One of them is to transform a nonlinear system into a higher-dimensional NOCF: system immersion and dynamic observer error linearization (DOEL). In particular, the main idea of DOEL is twofold: the first is to introduce an auxiliary dynamics whose input is system output, and the second is to transform the extended system into a generalized nonlinear observer canonical form (GNOCF) that is an observable linear system modulo generalized output injection depending not only on the system output but also on the state of auxiliary dynamics. By introducing such an auxiliary dynamics, the DOEL problem can be solved for a larger class of systems compared with the (conventional) OEL problem. However, it has a drawback on the dimension of observer. That is, the dimension of observer designed by the DOEL approach is larger than that of the given system, because the dimension of GNOCF equals to the sum of dimensions of the given system and the auxiliary dynamics. Recently, inspired by this fact, a new approach called reduced-order dynamic observer error linearization (RDOEL) was proposed for single output nonlinear systems. In the framework of RDOEL, we also introduce an auxiliary dynamics and transform the extended system into GNOCF in a similar fashion to DOEL, but the coordinate transformation preserves the coordinates corresponding to the state of auxiliary dynamics so that the dimension of GNOCF equals to that of the given system. Although RDOEL is a special case of DOEL (that is, the class of systems to which the RDOEL approach can be applied is a subset of that of DOEL), the RDOEL approach offers a lower-dimensional observer compared to the DOEL approach, and it is also applicable to a larger class of systems compared to the (conventional) OEL approach. In addition, since the framework of RDOEL is coterminous with that of OEL (in fact, the OEL problem is identical to the RDOEL problem with no auxiliary dynamics), most of results for the RDOEL problem can be also used to analyze the OEL problem by slight modification. In this respect, one of the topics of this dissertation is to deal with the RDOEL problem for multi-output systems. We first formulate the framework of RDOEL for multi-output nonlinear systems and provide three necessary conditions. And then, by means of the necessary conditions, we derive a geometric necessary and sufficient condition in terms of Lie algebras of vector fields. Since the proposed RDOEL problem is a natural extension of the (conventional) OEL problem, the result can be easily translated into a geometric necessary and sufficient condition for the OEL problem, which has not yet been completely established in the case where an output transformation of general form is considered. The other topic of the dissertation is to introduce an extended nonlinear observer canonical form (ENOCF) whose linear part also depends on the system output and the state of auxiliary dynamics, and to deal with the problem of transforming a single output nonlinear system with an auxiliary dynamics into the ENOCF as an extension of the RDOEL problem. Since the proposed ENOCF admits a kind of high-gain observers, the solvability of the problem allows us to design observers for a class of single output nonlinear systems. We also first present two necessary conditions, and then derive a geometric necessary and sufficient condition for the problem. Furthermore, as a case study, we apply the results to the Rำงssler system in order to show that the proposed method enlarges the class of applicable systems compared with the RDOEL approach.ABSTRACT i List of Figures ix Notation and Acronyms x 1 Introduction 1 1.1 Research Background 1 1.2 Organization and Contributions of the Dissertation 5 2 Mathematical Preliminaries 7 2.1 Manifolds and Differentiable Structures 7 2.2 Vector Fields and Covector Fields 10 2.3 Lie Derivatives and Lie Brackets 13 2.4 Distributions and Codistributions 16 3 Review of Related Previous Works 21 3.1 Observability of Multi-Output Nonlinear Systems 21 3.2 Observer Error Linearization (OEL) 23 3.3 System Immersion 28 3.4 Dynamic Observer Error Linearization (DOEL) 30 3.5 Reduced-Order Dynamic Observer Error Linearization (RDOEL) for Single Output Systems 36 3.6 Inclusion Relation among OEL, System Immersion, DOEL, and RDOEL 39 4 Reduced-Order Dynamic Observer Error Linearization (RDOEL) for Multi-Output Systems 43 4.1 Problem Statement 43 4.2 Necessary Conditions 47 4.2.1 Observability 47 4.2.2 Inverse Output Transformation 52 4.2.3 System Dynamics 61 4.3 Necessary and Sufficient Conditions 65 4.3.1 Necessary and Sufficient Condition for RDOEL 65 4.3.2 Necessary and Sufficient Condition for OEL 80 4.3.3 Procedure to Solve OEL and RDOEL 81 4.4 Illustrative Examples 85 5 Extension of RDOEL: System into Extended Nonlinear Observer Canonical Form (ENOCF) 97 5.1 Problem Statement 99 5.2 Necessary Conditions 102 5.2.1 Output Transformation and Observability 102 5.2.2 System Dynamics 105 5.3 Necessary and Sufficient Condition 109 5.4 Case Study: Rำงssler System into ENOCF 117 6 Conclusions 125 BIBLIOGRAPHY 129 ๊ตญ๋ฌธ์ดˆ๋ก 139 ๊ฐ์‚ฌ์˜ ๊ธ€ 143Docto

    Complexity reduction for resilient state estimation of uniformly observable nonlinear systems

    Full text link
    A resilient state estimation scheme for uniformly observable nonlinear systems, based on a method for local identification of sensor attacks, is presented. The estimation problem is combinatorial in nature, and so many methods require substantial computational and storage resources as the number of sensors increases. To reduce the complexity, the proposed method performs the attack identification with local subsets of the measurements, not with the set of all measurements. A condition for nonlinear attack identification is introduced as a relaxed version of existing redundant observability condition. It is shown that an attack identification can be performed even when the state cannot be recovered from the measurements. As a result, although a portion of measurements are compromised, they can be locally identified and excluded from the state estimation, and thus the true state can be recovered. Simulation results demonstrate the effectiveness of the proposed scheme.Comment: 12 pages, 4 figures, submitted to IEEE Transactions on Automatic Contro

    Finite time observers: application to secure communication

    Get PDF
    International audienceIn this paper, control theory is used to formalize finite time chaos synchronization as a nonlinear finite time observer design issue. This paper introduces a finite time observer for nonlinear systems that can be put into a linear canonical form up to output injection. The finite time convergence relies on the homogeneity properties of nonlinear systems. The observer is then applied to the problem of secure data transmission based on finite time chaos synchronization and the two-channel transmission method

    Observability analysis and observer design for controlled population dynamics

    Get PDF
    The diploma thesis studies the design of nonlinear observers with exactly linear error dynamics via transformation or immersion into an appropriate observer canonical form. A model for the dynamics of two interacting species, which was derived as a generalisation of the predator-prey model by Lotka and Volterra, is used as benchmark system for this design. In particular, an additional control input is modelled in three ways. As observability of the system is a necessary condition for observer design, the methods for an observability analysis are presented and applied to the model. After that, the theoretical basics of the observer design methods are described and used for the design of an observer with exactly linear error dynamics, with regard to the results from the observability analysis. The observers are designed as Luenberger observers with output injection for the uncontrolled system and with input/output injection for the controlled systems. Some new studies concern the invariance properties of the nonlinear observers on a state region which is relevant for the system. For this purpose, the notation of invariant observers is introduced, which guarantee a global observation of the system on the relevant region. Based on the considered observer canonical form, this notation helps to develop some general methods how to design such observers.Die Diplomarbeit untersucht den Entwurf nichtlinearer Beobachter mit exakt linearer Fehlerdynamik durch Transformation oder Immersion in eine geeignete Beobachternormalform. Als Benchmark-System fรผr diesen Entwurf wird ein Modell zweier interagierender Populationen verwendet, das sich aus einer Verallgemeinerung des Rauber-Beute-Modells von Lotka und Volterra ergibt. Insbesondere werden drei Mรถglichkeiten betrachtet, einen Eingang zu diesem System hinzuzufรผgen. Da die Beobachtbarkeit des Systems eine notwendige Voraussetzung fรผr den Entwurf eines Beobachters ist, werden zuerst die Methoden zur Beobachtbarkeitsanalyse vorgestellt und auf das Modell angewandt. Danach werden die theoretischen Grundlagen der Beobachterentwurfsverfahren erlรคutert, welche unter Berรผcksichtigung der Ergebnisse aus der Beobachtbarkeitsuntersuchung fรผr den Entwurf eines Beobachters mit exakt linearer Fehlerdynamik verwendet werden. Die Beobachter werden als Luenberger-Beobachter mit Ausgangsaufschaltung fรผr das autonome System und mit Eingangs-/Ausgangsaufschaltung fรผr die Systeme mit Eingang entworfen. Neue Fragestellungen betreffen die Invarianzeigenschaften der entworfenen Beobachter auf einem fรผr das System relevanten Zustandsbereich. Hierfรผr wird die Notation der invarianten Beobachter eingefรผhrt, die eine globale Beobachtung des Systems im relevanten Bereich garantieren. Basierend auf der verwendeten Beobachternormalform werden mit Hilfe dieser Notation einige allgemeine Methoden entwickelt, mit denen solche Beobachter entwerfen werden kรถnnen
    • โ€ฆ
    corecore