7 research outputs found

    Comprehensive pineapple segmentation techniques with intelligent convolutional neural network

    Get PDF
    This paper proposes an intelligent segmentation technique for pineapple fruit using Convolutional Neural Network (CNN). Cascade Object Detector (COD) method is used to detect the position of the pineapple from the captured image by returning the bounding box around the detecting pineapple. Image background such as ground, sky and other unwanted objects have been removed using Hue value, Adaptive Red and Blue Chromatic Map (ARB) and Normalized Difference Index (NDI) methods. However, the ARB and NDI methods are still producing misclassified error and the edge is not really smooth. In this case Template Matching Method (TMM) has been implemented for image enhancement process. Finally, an intelligent CNN is developed as a decision maker to select the best segmentation image ouput from ARB and NDI. The results obtained show that the proposed intelligent method has successfully verified the fruit from the background with high accuracy as compared to the conventional method

    Fusion of fruit image processing and deep learning: a study on identification of citrus ripeness based on R-LBP algorithm and YOLO-CIT model

    Get PDF
    Citrus fruits are extensively cultivated fruits with high nutritional value. The identification of distinct ripeness stages in citrus fruits plays a crucial role in guiding the planning of harvesting paths for citrus-picking robots and facilitating yield estimations in orchards. However, challenges arise in the identification of citrus fruit ripeness due to the similarity in color between green unripe citrus fruits and tree leaves, leading to an omission in identification. Additionally, the resemblance between partially ripe, orange-green interspersed fruits and fully ripe fruits poses a risk of misidentification, further complicating the identification of citrus fruit ripeness. This study proposed the YOLO-CIT (You Only Look Once-Citrus) model and integrated an innovative R-LBP (Roughness-Local Binary Pattern) method to accurately identify citrus fruits at distinct ripeness stages. The R-LBP algorithm, an extension of the LBP algorithm, enhances the texture features of citrus fruits at distinct ripeness stages by calculating the coefficient of variation in grayscale values of pixels within a certain range in different directions around the target pixel. The C3 model embedded by the CBAM (Convolutional Block Attention Module) replaced the original backbone network of the YOLOv5s model to form the backbone of the YOLO-CIT model. Instead of traditional convolution, Ghostconv is utilized by the neck network of the YOLO-CIT model. The fruit segment of citrus in the original citrus images processed by the R-LBP algorithm is combined with the background segment of the citrus images after grayscale processing to construct synthetic images, which are subsequently added to the training dataset. The experiment showed that the R-LBP algorithm is capable of amplifying the texture features among citrus fruits at distinct ripeness stages. The YOLO-CIT model combined with the R-LBP algorithm has a Precision of 88.13%, a Recall of 93.16%, an F1 score of 90.89, a [email protected] of 85.88%, and 6.1ms of average detection speed for citrus fruit ripeness identification in complex environments. The model demonstrates the capability to accurately and swiftly identify citrus fruits at distinct ripeness stages in real-world environments, effectively guiding the determination of picking targets and path planning for harvesting robots

    Fruit detection in an apple orchard using a mobile terrestrial laser scanner

    Get PDF
    The development of reliable fruit detection and localization systems provides an opportunity to improve the crop value and management by limiting fruit spoilage and optimised harvesting practices. Most proposed systems for fruit detection are based on RGB cameras and thus are affected by intrinsic constraints, such as variable lighting conditions. This work presents a new technique that uses a mobile terrestrial laser scanner (MTLS) to detect and localise Fuji apples. An experimental test focused on Fuji apple trees (Malus domestica Borkh. cv. Fuji) was carried out. A 3D point cloud of the scene was generated using an MTLS composed of a Velodyne VLP-16 LiDAR sensor synchronised with an RTK-GNSS satellite navigation receiver. A reflectance analysis of tree elements was performed, obtaining mean apparent reflectance values of 28.9%, 29.1%, and 44.3% for leaves, branches and trunks, and apples, respectively. These results suggest that the apparent reflectance parameter (at 905 nm wavelength) can be useful to detect apples. For that purpose, a fourstep fruit detection algorithm was developed. By applying this algorithm, a localization success of 87.5%, an identification success of 82.4%, and an F1-score of 0.858 were obtained in relation to the total amount of fruits. These detection rates are similar to those obtained by RGB-based systems, but with the additional advantages of providing direct 3D fruit location information, which is not affected by sunlight variations. From the experimental results, it can be concluded that LiDAR-based technology and, particularly, its reflectance information, has potential for remote apple detection and 3D location.This work was partly funded by the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya (grant 2017 SGR 646), the Spanish Ministry of Economy and Competitiveness (projects AGL2013-48297-C2-2-Rand MALEGRA, TEC2016-75976-R) and the Spanish Ministry of Science, Innovation and Universities (project RTI2018-094222-B-I00). The Spanish Ministry of Education is thanked for Mr. J. Gené’s pre-doctoral fellowships (FPU15/03355). The work of Jordi Llorens was supported by Spanish Ministry of Economy, Industry and Competitiveness through a postdoctoral position named Juan de la Cierva Incorporación (JDCI-2016-29464_N18003). We would also like to thank CONICYT/FONDECYT for grant 1171431 and CONICYT FB0008. Nufri (especially Santiago Salamero and Oriol Morreres) and Vicens Maquinària Agrícola S.A. are also thanked for their support during the data acquisition

    Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities

    Get PDF
    Fruit detection and localization will be essential for future agronomic management of fruit crops, with applications in yield prediction, yield mapping and automated harvesting. RGB-D cameras are promising sensors for fruit detection given that they provide geometrical information with color data. Some of these sensors work on the principle of time-of-flight (ToF) and, besides color and depth, provide the backscatter signal intensity. However, this radiometric capability has not been exploited for fruit detection applications. This work presents the KFuji RGB-DS database, composed of 967 multi-modal images containing a total of 12,839 Fuji apples. Compilation of the database allowed a study of the usefulness of fusing RGB-D and radiometric information obtained with Kinect v2 for fruit detection. To do so, the signal intensity was range corrected to overcome signal attenuation, obtaining an image that was proportional to the reflectance of the scene. A registration between RGB, depth and intensity images was then carried out. The Faster R-CNN model was adapted for use with five-channel input images: color (RGB), depth (D) and range-corrected intensity signal (S). Results show an improvement of 4.46% in F1-score when adding depth and range-corrected intensity channels, obtaining an F1-score of 0.898 and an AP of 94.8% when all channels are used. From our experimental results, it can be concluded that the radiometric capabilities of ToF sensors give valuable information for fruit detection.This work was partly funded by the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya, the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (ERDF) under Grants 2017SGR 646, AGL2013-48297-C2-2-R and MALEGRA, TEC2016-75976-R. The Spanish Ministry of Education is thanked for Mr. J. Gené’s predoctoral fellowships (FPU15/03355). We would also like to thank Nufri and Vicens Maquinària Agrícola S.A. for their support during data acquisition, and Adria Carbó for his assistance in Faster R-CNN implementation

    A Counting Method of Red Jujube Based on Improved YOLOv5s

    Get PDF
    Due to complex environmental factors such as illumination, shading between leaves and fruits, shading between fruits, and so on, it is a challenging task to quickly identify red jujubes and count red jujubes in orchards. A counting method of red jujube based on improved YOLOv5s was proposed, which realized the fast and accurate detection of red jujubes and reduced the model scale and estimation error. ShuffleNet V2 was used as the backbone of the model to improve model detection ability and light the weight. In addition, the Stem, a novel data loading module, was proposed to prevent the loss of information due to the change in feature map size. PANet was replaced by BiFPN to enhance the model feature fusion capability and improve the model accuracy. Finally, the improved YOLOv5s detection model was used to count red jujubes. The experimental results showed that the overall performance of the improved model was better than that of YOLOv5s. Compared with the YOLOv5s, the improved model was 6.25% and 8.33% of the original network in terms of the number of model parameters and model size, and the Precision, Recall, F1-score, AP, and Fps were improved by 4.3%, 2.0%, 3.1%, 0.6%, and 3.6%, respectively. In addition, RMSE and MAPE decreased by 20.87% and 5.18%, respectively. Therefore, the improved model has advantages in memory occupation and recognition accuracy, and the method provides a basis for the estimation of red jujube yield by vision

    Comparison of Different Classifiers and the Majority Voting Rule for the Detection of Plum Fruits in Garden Conditions

    Get PDF
    Color segmentation is one of the most thoroughly studied problems in agricultural applications of remote image capture systems, since it is the key step in several different tasks, such as crop harvesting, site specific spraying, and targeted disease control under natural light. This paper studies and compares five methods to segment plum fruit images under ambient conditions at 12 different light intensities, and an ensemble method combining them. In these methods, several color features in different color spaces are first extracted for each pixel, and then the most effective features are selected using a hybrid approach of artificial neural networks and the cultural algorithm (ANN-CA). The features selected among the 38 defined channels were the b* channel of L*a*b*, and the color purity index, C*, from L*C*h. Next, fruit/background segmentation is performed using five classifiers: artificial neural network-imperialist competitive algorithm (ANN-ICA); hybrid artificial neural network-harmony search (ANN-HS); support vector machines (SVM); k nearest neighbors (kNN); and linear discriminant analysis (LDA). In the ensemble method, the final class for each pixel is determined using the majority voting method. The experiments showed that the correct classification rate for the majority voting method excluding LDA was 98.59%, outperforming the results of the constituent methods.This research was funded by the Spanish MICINN, as well as European Commission FEDER funds, under grant RTI2018-098156-B-C53. This project has also been supported by the European Union (EU) under Erasmus+ project entitled "Fostering Internationalization in Agricultural Engineering in Iran and Russia" [FARmER] with grant number 585596-EPP-1-2017-1-DE-EPPKA2-CBHE-JP
    corecore