2,991 research outputs found

    Adversarial Imitation Learning from Incomplete Demonstrations

    Full text link
    Imitation learning targets deriving a mapping from states to actions, a.k.a. policy, from expert demonstrations. Existing methods for imitation learning typically require any actions in the demonstrations to be fully available, which is hard to ensure in real applications. Though algorithms for learning with unobservable actions have been proposed, they focus solely on state information and overlook the fact that the action sequence could still be partially available and provide useful information for policy deriving. In this paper, we propose a novel algorithm called Action-Guided Adversarial Imitation Learning (AGAIL) that learns a policy from demonstrations with incomplete action sequences, i.e., incomplete demonstrations. The core idea of AGAIL is to separate demonstrations into state and action trajectories, and train a policy with state trajectories while using actions as auxiliary information to guide the training whenever applicable. Built upon the Generative Adversarial Imitation Learning, AGAIL has three components: a generator, a discriminator, and a guide. The generator learns a policy with rewards provided by the discriminator, which tries to distinguish state distributions between demonstrations and samples generated by the policy. The guide provides additional rewards to the generator when demonstrated actions for specific states are available. We compare AGAIL to other methods on benchmark tasks and show that AGAIL consistently delivers comparable performance to the state-of-the-art methods even when the action sequence in demonstrations is only partially available.Comment: Accepted to International Joint Conference on Artificial Intelligence (IJCAI-19

    Diffusion Models for Reinforcement Learning: A Survey

    Full text link
    Diffusion models surpass previous generative models in sample quality and training stability. Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions. This survey aims to provide an overview of this emerging field and hopes to inspire new avenues of research. First, we examine several challenges encountered by RL algorithms. Then, we present a taxonomy of existing methods based on the roles of diffusion models in RL and explore how the preceding challenges are addressed. We further outline successful applications of diffusion models in various RL-related tasks. Finally, we conclude the survey and offer insights into future research directions. We are actively maintaining a GitHub repository for papers and other related resources in utilizing diffusion models in RL: https://github.com/apexrl/Diff4RLSurvey.Comment: Fixed typo

    Few-Shot Bayesian Imitation Learning with Logical Program Policies

    Full text link
    Humans can learn many novel tasks from a very small number (1--5) of demonstrations, in stark contrast to the data requirements of nearly tabula rasa deep learning methods. We propose an expressive class of policies, a strong but general prior, and a learning algorithm that, together, can learn interesting policies from very few examples. We represent policies as logical combinations of programs drawn from a domain-specific language (DSL), define a prior over policies with a probabilistic grammar, and derive an approximate Bayesian inference algorithm to learn policies from demonstrations. In experiments, we study five strategy games played on a 2D grid with one shared DSL. After a few demonstrations of each game, the inferred policies generalize to new game instances that differ substantially from the demonstrations. Our policy learning is 20--1,000x more data efficient than convolutional and fully convolutional policy learning and many orders of magnitude more computationally efficient than vanilla program induction. We argue that the proposed method is an apt choice for tasks that have scarce training data and feature significant, structured variation between task instances.Comment: AAAI 202
    • …
    corecore