15 research outputs found

    Interaction of catechol O-methyltransferase and serotonin transporter genes modulates effective connectivity in a facial emotion-processing circuitry

    Get PDF
    Imaging genetic studies showed exaggerated blood oxygenation level-dependent response in limbic structures in carriers of low activity alleles of serotonin transporter-linked promoter region (5-HTTLPR) as well as catechol O-methyltransferase (COMT) genes. This was suggested to underlie the vulnerability to mood disorders. To better understand the mechanisms of vulnerability, it is important to investigate the genetic modulation of frontal-limbic connectivity that underlies emotional regulation and control. In this study, we have examined the interaction of 5-HTTLPR and COMT genetic markers on effective connectivity within neural circuitry for emotional facial expressions. A total of 91 healthy Caucasian adults underwent functional magnetic resonance imaging experiments with a task presenting dynamic emotional facial expressions of fear, sadness, happiness and anger. The effective connectivity within the facial processing circuitry was assessed with Granger causality method. We have demonstrated that in fear processing condition, an interaction between 5-HTTLPR (S) and COMT (met) low activity alleles was associated with reduced reciprocal connectivity within the circuitry including bilateral fusiform/inferior occipital regions, right superior temporal gyrus/superior temporal sulcus, bilateral inferior/middle prefrontal cortex and right amygdala. We suggest that the epistatic effect of reduced effective connectivity may underlie an inefficient emotion regulation that places these individuals at greater risk for depressive disorders

    Serotonin transporter gene polymorphisms and brain function during emotional distraction from cognitive processing in posttraumatic stress disorder

    Get PDF
    BACKGROUND: Serotonergic system dysfunction has been implicated in posttraumatic stress disorder (PTSD). Genetic polymorphisms associated with serotonin signaling may predict differences in brain circuitry involved in emotion processing and deficits associated with PTSD. In healthy individuals, common functional polymorphisms in the serotonin transporter gene (SLC6A4) have been shown to modulate amygdala and prefrontal cortex (PFC) activity in response to salient emotional stimuli. Similar patterns of differential neural responses to emotional stimuli have been demonstrated in PTSD but genetic factors influencing these activations have yet to be examined. METHODS: We investigated whether SLC6A4 promoter polymorphisms (5-HTTLPR, rs25531) and several downstream single nucleotide polymorphisms (SNPs) modulated activity of brain regions involved in the cognitive control of emotion in post-9/11 veterans with PTSD. We used functional MRI to examine neural activity in a PTSD group (n = 22) and a trauma-exposed control group (n = 20) in response to trauma-related images presented as task-irrelevant distractors during the active maintenance period of a delayed-response working memory task. Regions of interest were derived by contrasting activation for the most distracting and least distracting conditions across participants. RESULTS: In patients with PTSD, when compared to trauma-exposed controls, rs16965628 (associated with serotonin transporter gene expression) modulated task-related ventrolateral PFC activation and 5-HTTLPR tended to modulate left amygdala activation. Subsequent to combat-related trauma, these SLC6A4 polymorphisms may bias serotonin signaling and the neural circuitry mediating cognitive control of emotion in patients with PTSD. CONCLUSIONS: The SLC6A4 SNP rs16965628 and 5-HTTLPR are associated with a bias in neural responses to traumatic reminders and cognitive control of emotions in patients with PTSD. Functional MRI may help identify intermediate phenotypes and dimensions of PTSD that clarify the functional link between genes and disease phenotype, and also highlight features of PTSD that show more proximal influence of susceptibility genes compared to current clinical categorizations

    Importance of polysomnographic parameters as biomarkers of depression

    Full text link
    Thesis (M.A.)--Boston UniversityDepression is a common mental disorder that does not discriminate between age, gender, or race. Depression occurs when extreme feelings of sadness, accompanied by other physical symptoms, such as sleep difficulties, prevent functioning at normal daily activities. Previous studies have established a bilateral relationship between depression and insomnia that support a clinical importance in using insomnia screenings as an additional component to recognizing depression. This study analyzed which PSG parameters, from previous studies on depression, have the most common trend with depressed subjects compared to normal controls. A literature search on MEDLINE was utilized to gather the sleep studies that focused on depression and PSG parameters. The data was compiled to determine the common PSG parameters that provided significant evidence to support a trend between depressed and normal participants. This study identified nine parameters with trends that were commonly found in the studies: sleep latency, sleep efficiency, WASO, TST/TSA, duration in N2, SWS, delta sleep ratio, REM latency, and REM density. Of these parameters, sleep latency, amount of SWS, REM latency, delta sleep ratio, and alpha-delta sleep warranted further investigation in a clinical setting. An experimental component has been developed to investigate clinically the importance of the PSG parameters gathered from this study. The research will focus on determining PSG parameter trends in a clinical setting of a sleep lab. A BDI-II will be administered before a baseline sleep PSG is acquired. The BDI-II score will be analyzed in relation to the PSG obtained for each subject. The clinical study is in the BUMC IRB approval process and has been conditionally approved pending amendments to the original application

    Bayesian longitudinal low-rank regression models for imaging genetic data from longitudinal studies

    Get PDF
    To perform a joint analysis of multivariate neuroimaging phenotypes and candidate genetic markers obtained from longitudinal studies, we develop a Bayesian longitudinal low-rank regression (L2R2) model. The L2R2 model integrates three key methodologies: a low-rank matrix for approximating the high-dimensional regression coefficient matrices corresponding to the genetic main effects and their interactions with time, penalized splines for characterizing the overall time effect, and a sparse factor analysis model coupled with random effects for capturing within-subject spatio-temporal correlations of longitudinal phenotypes. Posterior computation proceeds via an efficient Markov chainMonte Carlo algorithm. Simulations show that the L2R2 model outperforms several other competing methods. We apply the L2R2 model to investigate the effect of single nucleotide polymorphisms (SNPs) on the top 10 and top 40 previously reported Alzheimer disease-associated genes. We also identify associations between the interactions of these SNPs with patient age and the tissue volumes of 93 regions of interest from patients’ brain images obtained from the Alzheimer’s Disease Neuroimaging Initiative

    SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression

    Get PDF
    The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM out-performs other state-of-the-art methods

    Bayesian Generalized Low Rank Regression Models for Neuroimaging Phenotypes and Genetic Markers

    Get PDF
    We propose a Bayesian generalized low rank regression model (GLRR) for the analysis of both high-dimensional responses and covariates. This development is motivated by performing searches for associations between genetic variants and brain imaging phenotypes. GLRR integrates a low rank matrix to approximate the high-dimensional regression coefficient matrix of GLRR and a dynamic factor model to model the high-dimensional covariance matrix of brain imaging phenotypes. Local hypothesis testing is developed to identify significant covariates on high-dimensional responses. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. A simulation study is performed to evaluate the finite sample performance of GLRR and its comparison with several competing approaches. We apply GLRR to investigate the impact of 1,071 SNPs on top 40 genes reported by AlzGene database on the volumes of 93 regions of interest (ROI) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI)

    Biological Alterations in Depression

    Get PDF

    Multiple SNP Set Analysis for Genome-Wide Association Studies Through Bayesian Latent Variable Selection

    Get PDF
    The power of genome-wide association studies (GWAS) for mapping complex traits with single SNP analysis may be undermined by modest SNP effect sizes, unobserved causal SNPs, correlation among adjacent SNPs, and SNP-SNP interactions. Alternative approaches for testing the association between a single SNP-set and individual phenotypes have been shown to be promising for improving the power of GWAS. We propose a Bayesian latent variable selection (BLVS) method to simultaneously model the joint association mapping between a large number of SNP-sets and complex traits. Compared to single SNP-set analysis, such joint association mapping not only accounts for the correlation among SNP-sets, but also is capable of detecting causal SNP-sets that are marginally uncorrelated with traits. The spike-slab prior assigned to the effects of SNP-sets can greatly reduce the dimension of effective SNP-sets, while speeding up computation. An efficient MCMC algorithm is developed. Simulations demonstrate that BLVS outperforms several competing variable selection methods in some important scenarios

    Approaches For Capturing Time-Varying Functional Network Connectivity With Application to Normative Development and Mental Illness

    Get PDF
    Since the beginning of medical science, the human brain has remained an unsolved puzzle; an illusive organ that controls everything- from breathing to heartbeats, from emotion to anger, and more. With the power of advanced neuroimaging techniques, scientists have now started to solve this nearly impossible puzzle, piece by piece. Over the past decade, various in vivo techniques, including functional magnetic resonance imaging (fMRI), have been increasingly used to understand brain functions. fMRI is extensively being used to facilitate the identification of various neuropsychological disorders such as schizophrenia (SZ), bipolar disorder (BP) and autism spectrum disorder (ASD). These disorders are currently diagnosed based on patients’ self-reported experiences, and observed symptoms and behaviors over the course of the illnesses. Therefore, efficient identification of biological-based markers (biomarkers) can lead to early diagnosis of these mental disorders, and provide a trajectory for disease progression. By applying advanced machine learning techniques on fMRI data, significant differences in brain function among patients with mental disorders and healthy controls can be identified. Moreover, by jointly estimating information from multiple modalities, such as, functional brain data and genetic factors, we can now investigate the relationship between brain function and genes. Functional connectivity (FC) has become a very common measure to characterize brain functions, where FC is defined as the temporal covariance of neural signals between multiple spatially distinct brain regions. Recently, researchers are studying the FC among functionally specialized brain networks which can be defined as a higher level of FC, and is termed as functional network connectivity (FNC, defined as the correlation value that summarizes the overall connection between brain ‘networks’ over time). Most functional connectivity studies have made the limiting assumption that connectivity is stationary over multiple minutes, and ignore to identify the time-varying and reoccurring patterns of FNC among brain regions (known as time-varying FNC). In this dissertation, we demonstrate the use of time-varying FNC features as potential biomarkers to differentiate between patients with mental disorders and healthy subjects. The developmental characteristics of time-varying FNC in children with typically developing brain and ASD have been extensively studies in a cross-sectional framework, and age-, sex- and disease-related FNC profiles have been proposed. Also, time-varying FNC is characterized in healthy adults and patients with severe mental disorders (SZ and BP). Moreover, an efficient classification algorithm is designed to identify patients and controls at individual level. Finally, a new framework is proposed to jointly utilize information from brain’s functional network connectivity and genetic features to find the associations between them. The frameworks that we presented here can help us understand the important role played by time-varying FNC to identify potential biomarkers for the diagnosis of severe mental disorders
    corecore