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Abstract

The power of genome-wide association studies (GWAS) for mapping complex traits with single 

SNP analysis may be undermined by modest SNP effect sizes, unobserved causal SNPs, 

correlation among adjacent SNPs, and SNP-SNP interactions. Alternative approaches for testing 

the association between a single SNP-set and individual phenotypes have been shown to be 

promising for improving the power of GWAS. We propose a Bayesian latent variable selection 

(BLVS) method to simultaneously model the joint association mapping between a large number of 

SNP-sets and complex traits. Compared to single SNP-set analysis, such joint association mapping 

not only accounts for the correlation among SNP-sets, but also is capable of detecting causal SNP-

sets that are marginally uncorrelated with traits. The spike-slab prior assigned to the effects of 

SNP-sets can greatly reduce the dimension of effective SNP-sets, while speeding up computation. 

An efficient MCMC algorithm is developed. Simulations demonstrate that BLVS outperforms 

several competing variable selection methods in some important scenarios.
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1 Introduction

Genome-wide association studies (GWAS) have been fruitful in establishing the association 

between single-nucleotide polymorphisms (SNPs) and many complex traits. However, 

several key characteristics of SNPs data greatly undermine the performance of GWAS in 

detecting causal genetic markers for various diseases. First, it is increasingly recognized that 

variation in complex traits represents, in part, the joint effect of many variants with 
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individually small effect sizes, making them challenging to identify [Visscher et al., 2012]. 

Second, causal SNPs may not be genotyped directly. Their effects may be partly revealed by 

correlated SNPs which are genotyped, but the effects of these surrogate SNPs are even 

smaller, which makes them harder to detect. Third, SNPs may be highly correlated. Ignoring 

their correlation may increase the number of false positives and negatives. Finally, a group 

of SNPs with small or no marginal effects may have strong joint genetic effects on 

phenotype. Screening procedures, which usually use marginal information of SNPs to 

achieve dimension reduction, are likely to remove these SNPs with ‘weak’ marginal effects. 

Marginal association approaches for a single SNP or a SNP-set have been widely adopted 

partly because joint association of multiple SNPs/SNP-sets is computationally challenging. 

For these reasons, it is critical to develop much more efficient ways to simultaneously 

extract information from all SNPs in order to increase detection power, while capturing 

correlations and interactions among SNPs.

Various methods based on SNP-sets have been proposed to improve the performance of 

GWAS studies [Fridley and Biernacka, 2011; Skarman et al., 2012]. The use of SNP-sets 

[see Tzeng et al., 2011, for an overview] and gene sets/pathways [see Fridley and Biernacka, 

2011; Wang et al., 2010, for overviews] instead of individual SNPs for gene-trait association 

mapping is attractive for the following reasons. First, combining information across similar 

SNPs may increase detection power. Second, combining multiple SNPs in linkage 

disequilibrium (LD) may recover the power of detecting the correlated latent causal SNPs 

better than single SNP analysis [Schaid et al., 2002]. Third, the correlations among SNP-sets 

are usually small, and thus it alleviates the inflation of the false discovery rate.

Many methods have been proposed to carry out marker-set association, which include, but 

are not limited to, weighted sum of genotypes [Wang and Elston, 2007; Price et al., 2010], 

U-statistics approaches [Tzeng et al., 2003; Wei et al., 2008], and variance-component (VC) 

methods [Tzeng and Zhang, 2007; Wu et al., 2010]. In the VC methods, the genetic effects 

of SNPs within genes, pathways, or haplotype/linkage disequilibrium (LD) blocks are 

modeled through a set of random variables, and testing the marginal association between a 

SNP-set and a trait is equivalent to test whether the variance of the random variable is zero. 

The VC methods have been shown to have strong power in many situations when evaluating 

genetic main effects [Wu et al., 2010; Fridley et al., 2010; Ballard et al., 2010]. In addition, 

interaction effects of SNPs in a SNP-set can be potentially represented even if they are not 

explicitly included in the model [Wu et al., 2010].

Despite the popularity and power of the SNP-set and gene set association methods, further 

improvements can be made. Most of these methods [e.g., Pan, 2011; Mukhopadhyay et al., 

2010; Chapman and Whittaker, 2008; Gauderman et al., 2007] only study the marginal 

association of each set with a trait. In the context of SNP association analysis, studying the 

association of multiple SNPs simultaneously has some advantages over studying marginal 

associations [He and Lin, 2011; Guan and Stephens, 2011]. Analogously, studying the 

association of multiple SNP-sets jointly can be beneficial as well. Compared to single SNP-

set analysis, joint SNP-sets association mapping accounts for the correlation among SNP-

sets. Given that the causal SNP-sets are in the model, false positive signals of SNP-sets may 

be suppressed. Moreover, the joint SNP-sets association dramatically reduces the burden of 
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controlling for multiple comparisons, leading to improved power. Bayesian variable 

selection [BVS, George and McCulloch, 1993] is one of the feasible methods for joint 

modeling all genetic variables [Bhadra and Mallick, 2013; Logsdon et al., 2012; Fridley, 

2009; Hoggart et al., 2008]. However, in most cases, BVS is used for selecting SNPs instead 

of SNP-sets or gene sets.

The goal of this paper is to reformulate the association mapping of multiple SNP-sets as a 

simultaneous regression of a large number (say 105) of SNP-sets (or latent variables) on trait 

in a linear mixed effects modeling framework. Our multiple SNP-set mapping is based on a 

novel extension of Bayesian variable selection for selecting high dimensional variables 

[Liang et al., 2013; Barbieri and Berger, 2004]. See O’Hara and Sillanpää [2009] for an 

overview of Bayesian variable selection methods. We propose a Bayesian latent variable 

selection (BLVS) procedure, which simultaneously selects “significant” latent variables. An 

efficient Markov chain Monte Carlo (MCMC) algorithm is developed to dramatically reduce 

the complexity of two time-consuming steps in each MCMC iteration from O(qn3) and O(q|

δ|3) to O(qn) and O(q|δ|2), where n is the number of subjects, q is the number of SNP-sets, 

and |δ| is the number of casual SNP-sets. Simulation studies demonstrate that BLVS 

outperforms single SNP association and Lasso [Friedman et al., 2010] in all scenarios 

examined, while BLVS outperforms the group Lasso [Yang and Zou, 2013] in most 

scenarios considered. BLVS is applied to the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) data set on brain volumetric measurements. BLVS is also applied to the Swedish 

Schizophrenia Study [Ripke et al., 2013]. BLVS is able to detect several key genes found to 

be associated with Alzheimer’s disease and schizophrenia in the existing literature as well as 

several novel genes not reported before.

2 Material and Methods

2.1 Bayesian Latent Variable Selection for SNP-sets Association

We propose the following linear mixed effects model for joint association of multiple SNP-

sets with a quantitative trait. For the ith subject (i = 1, …, n)

(1)

where yi is a phenotype of interest, a and xi are d × 1 vectors of regression coefficients and 

covariates, and εi ~ N (0,ψ) is a Gaussian random error. The random variable bij represents 

the genetic information of the jth SNP-set, and γj is the corresponding SNP-set effect. More 

specifically, let ujk be an n × 1 vector containing the kth normalized SNP in the jth block of 

all subjects, Uj = (uj1, …, ujrj) be all SNPs in the jth block of all subjects, and bj = (b1j, …, 

bnj). The vector of random effects bj is derived from Uj through

(2)
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where  characterizes all subjects’ correlation structure in the jth SNP-set. It is 

also assumed that bj is independent of εi and bj′ for j′ ≠ j. The bj characterizes the correlation 

structure and the average direction of the ujks, and thus it represents the joint information of 

ujks. Extracting random effects from SNPs have been used in the literature. For instance, 

Kang et al. [2008] and Zhou et al. [2013] used a single random effect to characterize the 

correlation among subjects, which can handle relatedness due to population structure, family 

structure, among others. Wu et al. [2010] used a single random effect to test the marginal 

effect of a single SNP-set. In model (1), however, we use multiple random effects to 

represent a large number of SNP-sets and study their joint association with the complex trait. 

Through selecting non-zero γjs, model (1) can lead to the mapping of all q SNP-sets on the 

trait.

Model (1) may increase the power of detecting causal SNP-sets through accounting for the 

correlations among SNP-sets. Although bj and bj′ are assumed to be independent for j′ ≠ j in 

the prior distributions (2), the posterior means of causal bj and bj′ are correlated given that 

Uj and Uj′ are correlated. A small simulation study is presented in the supplementary 

material for demonstration.

We propose a Bayesian latent variable selection (BLVS) procedure, which can be viewed as 

an extension of Bayesian variable selection (BVS) for selecting fixed covariates. Our 

selection of bj is achieved by imposing a sparse structure on γ= (γ1, …, γq) through the 

spike-and-slab prior as follows:

(3)

(4)

where π, aσ01 (shape) and aσ02 (rate) are hyperparameters. The prior of γj is a mixture of a 

normal distribution and a point mass distribution at 0. The indicator variable δj is equal to 

either 0 or 1, indicating the mixture component affiliation of γj. We use δj to test the jth 

SNP-set because P(γj ≠ 0) = P(δj = 1). In the BVS literature, the posterior inclusion 

probability P(γj = 1|y) has been widely used as the selection criteria of γj. For instance, one 

widely used criterion is to retain all bj with P (γj = 1|y) > 0.5, which results in the median 

probability model [Barbieri and Berger, 2004]. Compared to other Bayesian shrinkage priors 

[Park and Casella, 2008], the spike-and-slab prior has the important advantage that it shrinks 

many γjs to zero exactly. The “significant” γj’s in equation (1) usually suggest correlation 

instead of causal relation. However, in GWAS, it is usually reasonable to interpret identified 

SNPs as causal SNPs [Guan and Stephens, 2011]. For convenience, we follow this 

convention and term the identified SNP-sets as causal SNP-sets.

From the computational perspective, the complexity of many operations, such as matrix 

multiplication and inversion, depends on the dimension of nonzero γjs, which leads to a 

huge computational saving. Our formulation also reduces the computational complexity 

from O(qα) to O(|δ|α), where |δ| is the number of nonzero γjs and α is a positive number. 

Given that |δ| ≪ q, the computation involved here is feasible.
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The hyper-parameter π controls the prior belief of sparsity of γ, and a small number is often 

given in high dimensional problems. The σj represents the prior information of the scale of 

γj. Instead of fixing , we learn  from data through (4). Let δ = (δ1, …, δq) and σ2 = (σ1, 

…, σq) for j = 1, …, q. We assume that (γj, δj, σj) are independent of each other such that 

, and .

Among studies using BVS, our proposed BLVS is closely related to Guan and Stephens 

[2011], which studied various aspects of BVS in GWAS extensively. They used a model and 

a prior setting similar to (1), (3), and (4) with MCMC algorithms. In comparison, they 

performed association based on SNPs instead of SNP-sets. Hence, bij in (1) is the observed 

SNPs instead of latent effects of SNP-sets. After model fitting, the inference about the 

inclusion of SNPs are done through moving windows, which is conceptually related to SNP-

sets. In comparison, we directly consider SNP-sets in the model estimation and inference. In 

the presence of highly correlated local SNPs, the signals of a SNP-set may be stronger than 

each SNP in the SNP-set. Hence, SNP-sets may be easier to detect compared to SNPs, and 

combining information of SNPs in a SNP-set may improve detection power. Moreover, the 

MCMC algorithms are different due to the latent variables.

It is worth noting that selecting random effects in the linear mixed effects model was 

previously studied by Chen and Dunson [2003] in a different context. Random effects were 

used to account for the within group correlation motivated by a longitudinal study. They 

considered selecting from tens of random effects with unknown covariance structures. In 

contrast, our model is motivated from GWAS and the dimension of random effects is much 

higher. Each latent variable is used to represent the joint effect of SNPs in a SNP-set, and 

the correlation structure is assumed known and determined by the SNP genotypes.

2.2 An Efficient MCMC Algorithm

Let θ = {a, γ, ψ, δ, σ2}. It is assumed that P(θ) = P(a)P(ψ)P(γ| δ, σ2)P(δ)P(σ2),

(5)

where a0, Σa0, a01 and a02 are hyperparameters. To develop Bayesian inference, we 

augment B = (b1, …, bq) to the observed data y = (y1, …, yn), and use a Markov chain 

Monte Carlo (MCMC) algorithm [Gelfand and Smith, 1990] to draw samples from P(θ, B|y) 

∝ P(y, B|θ)P(θ), where

(6)

Moreover, θ and B are further divided into blocks, each of which is sampled from its full 

conditional distribution iteratively [Gelfand and Smith, 1990]. The main challenge is how to 

efficiently sample bj and (γ, δ) given their high dimensionality. Details of the MCMC 

algorithm are given in the Appendix. We briefly elaborate the efficiency of our algorithm.
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There are two time-consuming steps for sampling bj. The first factorizes an n × n covariance 

matrix, which requires O(n3) operations. It would be very time-consuming if it was done in 

each MCMC iteration for all SNP-sets. Due to the assumption of bj in equation (2), 

factorization is only needed in the first iteration. Similar strategies have been used in 

different settings [Lippert et al., 2011; Zhou et al., 2013]. The second is a matrix 

multiplication, which transforms a standard multivariate Gaussian vector to (2), requires 

O(n2) operations. Given the low rank structure of equation (2) and rj ≪ n, the number of 

operations is reduced to O(n).

Let |δ| be the number of non-zero elements in δ. Sampling (γ,δ) is implemented by 

simulating (γj, δj) iteratively for all j, which requires O(|δ|3) operations for matrix inversion 

and determinant calculation. By using some matrix manipulations including binomial 

inverse theorem and matrix determinant lemma, we are able to reduce the computational 

complexity from O(|δ|3) to O(|δ|2). Such computational saving is considerable due to the 

large number of SNP-sets and MCMC iterations.

2.3 Simulation Study

We evaluated the finite sample performance of our multiple SNP-sets association method in 

a variety of simulation settings. Specifically, we compared our method with the following 

competing methods including: i) single SNP association analysis of each SNP [Purcell et al., 

2007]; ii) joint association of multiple SNPs through Lasso [Friedman et al., 2010]; iii) joint 

association of multiple SNP-sets through group Lasso [Yang and Zou, 2013]; and marginal 

SNP-set association through the SKAT method [Wu et al., 2010]. We did not report some 

other commonly-used methods [Chapman and Whittaker, 2008; Mukhopadhyay et al., 2010; 

Pan, 2011] that perform similarly to SKAT under certain kernel functions. We tried all the 

six kernel functions provided by SKAT and reported the one with the best performance.

2.3.1 Simulation Scenarios—We used LD blocks defined by the default method 

[Gabriel, 2002] of Haploview [Barrett et al., 2005] and PLINK [Purcell et al., 2007] to form 

SNP-sets. The SNPs in the adjacent LD blocks may have small or modest correlation. To 

calculate LD blocks, 1000 subjects were simulated by randomly combining haplotypes of 

HapMap CEU subjects. We used PLINK to determine the LD blocks based on these 

subjects. We randomly selected q blocks, and combined haplotypes of HapMap CEU 

subjects in each block to form genotype variables for n subjects. We assumed that the causal 

SNPs are not directly genotyped, and its association with phenotype is measured by the 

observed SNPs in the same LD block. Specifically, for a causal SNP-set j (j = 1, …, q*) with 

rj SNPs,  SNPs were randomly selected to generate yij. Define the genotypes of these 

SNPs as . The remaining  SNPs were used as uijk in (2). Moreover, 

 and uijk were standardized so that their mean and standard deviation equal to 0 and 1, 

respectively.

We considered different structures of the casual genetic effects with different signal 

strengths. In case 1, we assumed that the genetic effect of SNPs in a SNP-set is additive and 

homogeneous, such that yi were generated from:
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(7)

where xi = (xi1, xi2), xi1 = 1, xi2 ~ Uniform[0, 1], a = (1, 1)T, and ψ = 3. Moreover, three 

scenarios with , 0.021, and 0.028 were considered. The corresponding average 

heritability of each set is 0.5%, 1.0%, and 1.8%, respectively. In case 2, the setting is the 

same as that of case 1 except that we adopted an alternating structure of SNP effects such 

that , and c = 0.025, 0.035, and 0.07. The 

average heritability of each block is 0.3%, 0.6%, and 2%, respectively. In case 3, we 

considered a haplotype effects model inspired by Pan [2010]. Let 

, where  are 

the two haplotypes of individual i at block j. The phenotype is then generated through

(8)

where  equals standardized (gij1 + gij2), and , for 

l = 1, 2. We set the average heritability of each block to 0.5%, 1%, and 2% through different 

, respectively.

Settings with different numbers of q, q*, , and n were also investigated. In setting 1, we 

used q = 1000, q* = 10, , and n = 500. In setting 2, we set q = 2000, q* = 10, , 

and n = 1000. In setting 3, we set q = 2000, q* = 10, , and n = 1000.

As a result, 27 combinations were tested (3 cases x 3 scenarios x 3 settings). For each 

combination, 100 data sets were simulated. For each dataset, 5,000 MCMC samples were 

used as burn-in, and 20,000 samples were acquired to form the empirical posterior 

distribution. The hyper-parameters in the prior distributions were set as follows: a0 = 0, Σa0 

= 104Id, a01 = a02 = 0.001, π = 0.005, aσ01 = 2.1, and aσ02 = 0.5 * ν, where ν is the sample 

variance of yi. Additional simulation results with different SNP-set effects and larger 

numbers of q(= 10000), q*(= 20), and n(= 2000) were reported in the supplemental 

materials.

2.3.2 Methods for Comparison—For comparison, we reanalyzed the datasets with the 

four competing methods stated above. Firstly, we performed the single SNP analysis where 

the association between the phenotype and each SNP is tested by PLINK [Purcell et al., 

2007]. Secondly, we used Lasso to fit

(9)
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with the glmnet package [Friedman et al., 2010]. For both methods, a SNP-set is regarded as 

informative, when at least one of the SNPs in the set is informative. Thirdly, we used group 

Lasso to fit (9) with the gglasso package [Yang and Zou, 2013]. The group structure 

corresponds to the SNP-sets. Lastly, we applied the SKAT method [Wu et al., 2010] to each 

SNP-set. We compared the receiver operating characteristic (ROC) curves of our proposed 

method with the four methods. For SKAT, 6 different kernels are available in their R 

package, and we tried all kernels and reported the one with the largest area under curve 

(AUC) in favor of SKAT.

2.4 The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Imaging genetics evaluates associations between genetic factors and imaging measurements 

of brain structure and/or function [Medland et al., 2014]. The Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) is a public-private partnership which combines genetic, 

structural and functional neuroimaging, and clinical data to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). ADNI subjects have been 

recruited from over 50 sites across the United States and Canada. The initial goal of ADNI 

was to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-2 with 

additional 200 and 650 subjects, respectively. Structural brain MRI data and corresponding 

clinical and genetic data from baseline and follow-up were obtained from the ADNI public 

database (adni.loni.usc.edu, downloaded on May 6th, 2009). For up-to-date information, see 

www.adni-info.org.

We performed GWAS for imaging phenotypes related to Alzheimer’s disease. 

Determination of sensitive and specific markers of very early AD progression is intended to 

aid researchers and clinicians to develop new treatments and monitor their effectiveness, as 

well as lessen the time and cost of clinical trials. Advocates of this approach hypothesize 

that, compared to traditional case-control GWAS, using imaging measurements may 

improve the identification of pathogenic genes if imaging phenotypes are closer to the 

underlying biological etiology of many neurodegenerative and neuropsychiatric diseases 

[e.g., Alzheimer, Cannon and Keller, 2006; Scharinger et al., 2010; Chiang et al., 2011].

Subjects from ADNI-1 were used in this study. Briefly, the MRI data were collected using 

1.5 Tesla MRI scanners with protocols individualized for each scanner, included standard 

T1-weighted images obtained using volumetric 3-dimensional sagittal MPRAGE or 

equivalent protocols with varying resolutions. The MRI data were preprocessed by standard 

steps including anterior commissure and posterior commissure correction, skull-stripping, 

cerebellum removing, intensity inhomogeneity correction, segmentation, and registration 

[Shen and Davatzikos, 2004]. Subsequently, automatic regional labeling was performed by 

labeling the template and by transferring the labels following the deformable registration of 

subject images [Wang et al., 2011]. 93 ROIs were labeled, and the volume of each ROI for 

each subject was computed. For phenotype variables, we considered nine imaging 

biomarkers: whole grey matter volume, whole white matter volume and whole brain volume 

plus ROIs that are biomarkers for Alzheimer’s disease (left and right hippocampal volumes, 

left and right lateral ventricular volumes, and left and right amygdala volumes).
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Genotypes for 818 ADNI subjects were generated using Human 610-Quad BeadChips 

(Illumina, Inc., San Diego, CA), where there are 193 AD patients and 397 subjects with 

MCI. The original SNPs data are based on the human reference sequence build hg18, which 

were lifted over to hg19 in our analysis. We only considered the 760 Caucasian subjects. 

Our quality control included call rate check per subject and per SNP, sex check, relatedness 

identification, Hardy-Weinberg equilibrium test, SNP minor allele frequency, and ancestry 

outlier determination. We removed SNPs with (i) more than 5% missing values, (ii) minor 

allele frequency smaller than 5%, and (iii) Hardy-Weinberg equilibrium p-value < 1e−6. 

Remaining missing genotype variables were imputed as the modal value. We removed 

subjects with (i) outliers in population stratification, (ii) sex check failure, and (iii) more 

than 10% missing SNPs. In addition, we removed subjects with invalid volume 

measurements of ROIs for the ADNI data set. After quality control, there were 745 

Caucasian subjects and 501,666 SNPs left for the analysis.

We also considered two structures of genotype variables. First, LD blocks were calculated 

through PLINK [Purcell et al., 2007; Gabriel, 2002]. We studied the association between 

volumes and all LD blocks in each chromosome. Second, we selected SNPs belonging to the 

top AD candidate genes listed in the AlzGene database (http://www.alzgene.org), and used 

these genes to form SNP-sets. Specifically, we combined the list of the top 40 candidate 

genes published on June 10, 2010 with the 10 newly updated genes on 18 April 2011. Genes 

located on chromosome X and those with no genotyped SNPs were removed, resulting in 41 

candidate genes for the analysis.

2.5 Swedish Schizophrenia Dataset

Schizophrenia is an often devastating neuropsychiatric disorder with considerable morbidity, 

mortality and personal and social costs. A large recent GWAS meta-analysis identified 108 

common variant associations meeting genome-wide significance [Schizophrenia Working 

Group of the Psychiatric Genomics Consortium, 2014]. We analyzed five subsamples from 

the Swedish Schizophrenia Study, genotyped with Affymetrix 6.0 (sw2–sw4) and Illumina 

OmniExpress arrays (sw5–sw6) as described at length in Ripke et al. [2013]. The SNPs data 

are based on the human reference sequence build hg19. “sw5–sw6” contains 2895 cases and 

3835 controls, while “sw2–sw4” contains 2075 cases and 2341 controls. We applied the 

quality control procedures used for ADNI to the data sets except that subjects with more 

than 5% missing SNPs are excluded. For “sw2–sw4” and “sw5–sw6”, 600,745 and 539,883 

SNPs remain after quality control, from which 92,771 and 105,670 SNP-sets were calculated 

through the default method [Gabriel, 2002] of Haploview [Barrett et al., 2005]. 2875 cases 

and 3814 controls remain for “sw5–sw6”, and 2075 cases and 2341 controls remain for 

“sw2–sw4”.

We studied the association between the case/control status and all LD blocks in each 

chromosome by extending model (1) with the probit link used in generalized linear model. 

Gender and the first ten principal components calculated using EIGENSOFT [Price et al., 

2006] are included as covariates. We compared our SNP-set association method with the 

previous meta-analysis of Ripke et al. [2013]. For comparison, we also used logistic 

regression with Wald test to study association between case/control status and each SNP. It 
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is of interest to investigate if our method is capable of identifying SNP-sets missed by single 

SNP and SNP-set analysis. Also, we studied whether our top ranked SNP-sets were 

previously reported for schizophrenia and other mental disorders.

3 Results

3.1 Simulation Results

The power of our proposed method to detect SNP-sets and SNPs is compared to the other 

methods in all combinations of simulation settings through ROC curves. Figure 1 shows the 

ROC curves in case 1 with total counts of false positive versus true positive under different 

thresholds in 100 data sets. Group Lasso performs best in combinations with weak and 

modest heritability. For case 1, phenotype is generated from the additive model (7), which 

resembles model (9). Given that  is homogeneous in the same direction, and the 

correlation among SNPs in LD blocks are positive, the L2 norm penalty used by group 

Lasso [Yang and Zou, 2013] gives a good representation of the signal structure in SNP-sets. 

SKAT with the linear weighted kernel gives similar performance to group Lasso in these 

combinations. In contrast, our model does not assume additive SNP effects, leading to a 

slight power loss in the scenarios with weak and modest heritability. However, for data with 

larger heritability and sample sizes, the power loss becomes less severe.

Figure 2 shows the ROC curves in case 2. Our method outperforms group Lasso in most 

combinations with different heritability and dimensions. Moreover, group Lasso performs 

worse than Lasso and single SNP analysis in most combinations of this case. Given the 

alternating structure of SNP effects, SNP signals within each SNP set are largely cancelled 

out given the strong correlation among SNPs. In this case, the correlation structure of SNPs 

is an important factor to determine the overall signal strength of each SNP-set. Our approach 

uses SNPs information Uj in the prior specification of γj. In contrast, large absolute SNP 

effects  may lead to small joint effect under certain structure of Uj, making the group 

Lasso penalty [Yang and Zou, 2013] inefficient in measuring the joint effects of SNP-sets. 

In addition, given that the SNPs in a SNP-set are highly correlated, using all SNPs as basis 

functions to explain the joint effect of SNP-set may be inefficient. The abundant parameters 

cause the fixed effects models (e.g., Lasso and group Lasso) to lose power. In comparison, 

random effects models (e.g., our approach) use fewer parameters, leading to improved 

power. In the context of accounting for population structure, Zhang and Pan [2015] provide 

similar arguments through comparing principal component regression and linear mixed 

model. Linear weighted kernel is also the best kernel for SKAT in this case. SKAT performs 

similar to our method when the heritability is small and the number of blocks is small. When 

the number of blocks increases, the performance of SKAT may decrease, which may due to 

the characteristic that SKAT associates each SNP-set marginally. The ROC curves in case 3 

are depicted in supplementary Figure 2. The results are similar to those in Figure 2.

We tried to investigate the false positive levels for different methods empirically. In the 

figures with ROC curves, we have added symbols on the ROC curves to indicate the true 

and false positive counts (TP/FP) corresponding to certain thresholds. The p-value threshold 

of SKAT is 0.05 divided by the number of SNP-sets, i.e., Bonferroni corrected. For the 
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single SNP association, using the total number of SNPs for Bonferroni correction is too 

conservative because the SNPs in the SNP-sets are highly correlated. On the other hand, 

using the number of SNP-sets may be too liberal. We showed TP/FP at five levels, which 

assumes the number of independent tests equals 1 to 5 times of the number of SNP-sets. 

Specifically, the red triangle is the TP/FP of our method with PIP>0.5 as threshold. The 

purple cross is the TP/FP of SKAT with Bonferroni correction of 0.05. The number of tests 

is the number of SNP-sets. The black circles represent TP/FP of marginal single SNP 

association at different thresholds. In these figures, the thresholds of our method which use 

PIP>0.5 produce similar false positive counts compared to the marginal single SNP 

association and the SKAT with certain kinds of Bonferroni corrections.

In summary, in the presence of highly correlated SNPs, our method outperforms Lasso and 

the single SNP analysis in all combinations. Lasso performs slightly better than the single 

SNP analysis. However, group Lasso has unbalanced performance in different cases and 

settings. Group Lasso performs better in situation where the SNP effects are weak or 

modest, and the model is correctly specified. In contrast, our model is more robust to model 

misspecification, e.g., non-additive SNP effects, or the penalty function does not fit the 

structures of SNP effects within each SNP set. Also, our prior distribution of γ accounts for 

the SNP structure, and thus the proposed method is more flexible to data with different SNP 

structures.

In terms of computational efficiency, our method takes about 30 minutes to analyze one data 

set from setting 3 with a Linux server (3G memory and one core of a Intel X5560 

processor); single SNP association takes 5 minutes; Lasso (400 tuning parameter values) 

takes 10 minutes; group Lasso (400 tuning parameter values) takes 20 minutes; SKAT takes 

120 minutes.

Although we have formulated our model and simulation studies on quantitative trait, the 

proposed multiple SNP-sets method can be extended to case-control studies. Let zi denote 

the binary phenotype of the ith subject. A common approach to handle binary response 

variables in Bayesian variable selection is to introduce a latent variable  following model 

(1) and relate zi and  with a Probit link: zi = 1 if ; zi = 0 if  [Guan and 

Stephens, 2011; Albert and Chib, 1993]. The  is treated as missing data and we include an 

additional step to sample  to the MCMC algorithm for quantitative traits. Larger sample 

sizes are needed for binary phenotypes to achieve similar power of quantitative traits. We 

conducted a small simulation study for binary data, and results are summarized in Section 2 

and Figure 5 in the supplemental materials. The ROC curves indicate that the new results 

agree well with the results from the quantitative traits.

3.2 ADNI Results

We studied the associations between autosomal LD blocks and nine MRI phenotypes. The 

Manhattan plots of the inclusion probability of LD-blocks for the Hippocampal Formation 

Right are shown in the left panel of Figure 6. The Manhattan plots for the other ROIs and 

the total volumes are shown in the supplementary Figure 5.
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For comparison, we also calculated the p-values based on single SNP analysis. The 

Manhattan plots of −log 10(p-values) are shown in right panel of Figure 6 and the 

supplementary Figure 6. We showed the thresholds 5 × 10−8 commonly used in GWAS (the 

upper one). In addition, we also plotted the thresholds based on Bonferroni-correction with 

the number of SNP-sets instead of SNPs (the lower one). Only SNPs near TOMM40 

(adjacent to APOE) on chromosome 19 pass the thresholds. In contrast, our SNP-set method 

identifies more informative regions. SNP-sets associated with volumes of ROIs and total 

volumes are reported in Table 1, together with their locations and inclusion probabilities. In 

each SNP-set, the most significant SNP and its p-value of single SNP analysis are also 

recorded in Table 1. We also reported the nearest gene of each SNP-set within ±400Kb 

flanking regions. The genes overlapping with the SNP-sets are bolded. Regions with rich 

inclusion of genes are depicted in supplementary Figure 8. The SNP-set containing the 

APOE and TOMM40 on chromosome 19 is among the identified SNP-sets. There are other 

identified SNP-sets near genes which have not previously been associated with Alzheimer’s 

disease. Names of these genes are shown with italic fonts below.

First, some genes are known to be related to the development of the Alzheimer’s disease: 1) 

GALR1 [chr18, left amygdala, Stelzer et al., 2011]; 2) GAS6 [chr13, right amygdala, Yagami 

et al., 2002]; 3) LAMP-1 and ADPRHL1 [chr13, whole brain volume, Barrachina et al., 

2006; Stelzer et al., 2011]; 4) LDLR [chr19, right lateral ventricular, Kim et al., 2009; Bu, 

2009].

Second, some genes are related to genes associated with Alzheimer’s disease. It was 

reported that rare variants in APP, PSEN1 and PSEN2 increase risk for Alzheimer’s disease 

in late-onset Alzheimer’s disease families [Cruchaga et al., 2012]. The mutation of APP 

(amyloid beta (A4) precursor protein) protects against Alzheimer’s disease and age-related 

cognitive decline [Jonsson et al., 2012]. The following genes are known to interact with APP 

[Stark et al., 2006]: a) LY86, (chr6, left lateral ventricle); b) UPF3A (chr13, right amygdala). 

Also, ATP11A (chr13, whole brain volume) is an interacting gene with CTNNA3 

[Vardarajan, 2013], which is associated with the late-onset Alzheimer’s disease in females 

[Miyashita et al., 2007]. In addition, KANK2 and SPC24 (chr19, right lateral ventricular) 

were reported as interacting genes with PSEN1 and PSEN2, respectively [Soler-López et al., 

2011].

Third, some genes were reported in other brain dysfunction studies. CSMD1 (chr8, right 

hippocampal) is related to schizophrenia [Håvik et al., 2011]. GAS6 (chr13, right amygdala) 

is related to cerebrovascular disorders [Allen et al., 1999].

In the SNP-sets association analysis which used top AD candidate genes as SNP-sets, APOE 

is found to be associated with hippocampal formation left and right and amygdala left and 

right, which agrees with the results in Table 1. All the other candidate genes are not 

associated with the ROIs or total volumes in the analysis.

3.3 Results of Swedish Schizophrenia Dataset

The Manhattan plots of the inclusion probability of SNP-sets for “sw2-sw4” and “sw5-sw6” 

are shown in the first row of Figure 4. We also calculated the p-values based on the single 
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SNP analysis. The Manhattan plots of −log 10(p-values) of “sw2-sw4” and “sw5-sw6” are 

shown in the second row of Figure 4. The posterior inclusion probabilities of two SNP-sets 

in “sw5-sw6” are greater than 0.5. In comparison, no SNP passes the genome-wide 

threshold commonly used in GWAS (5 × 10−8) and the Bonferroni-correction with the 

number of SNP-sets. The top SNP-sets together with their locations and inclusion 

probabilities are shown in Tables 2 and 3. We also reported the SNP-sets with posterior 

probabilities larger than 0.2 to provide more information for future research in case larger 

samples become available. In each SNP-set, the most significant SNP from the single SNP 

analysis is also shown in Table 1. We used the GENCODE resource [Harrow et al., 2012] to 

generate the list of genes with which we overlapped the SNP-sets. For each gene, we 

searched its functionality and product in HGNC [Gray et al., 2013] which are shown in 

supplementary Tables 1 and 2.

In addition, we compared our results with existing literature. The SNP-sets with SNPs 

recorded in the National Human Genome Research Institute (NHGRI) catalog of published 

genome-wide association studies [Welter et al., 2014] are shown in supplementary Table 3. 

SNP-sets which overlap with genes recorded in the Online Mendelian Inheritance in Man 

(OMIM) [Hamosh et al., 2005] are listed in supplementary Table 4. We also searched results 

from previous genome-wide linkage studies and studies of copy-number variations (CNVs). 

SNP-sets containing linkage and CNV regions are shown in supplementary Tables 5 and 6, 

respectively. Finally, we compared our SNP-sets to a copy number variation morbidity map 

of developmental delay [Cooper et al., 2011] and listed the SNP-sets intersecting the CNV 

regions in supplementary Table 7.

Two SNP-sets in “sw5 - sw6” result in posterior inclusion probability greater than 0.5. One 

of them overlaps with the gene MAD1L1. This SNP-set demonstrates that the BLVS method 

can identify genetic variants reported in previous studies with much bigger sample sizes that 

used marginal single SNP association. MAD1L1 was reported in the schizophrenia meta-

analysis (5.93 × 10−13) with over 21,000 cases and 38,000 controls where “sw2-3” and 

“sw5-sw6” are included as subsamples [Ripke et al., 2013]. In a more recent large scale 

meta-analysis of schizophrenia [Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014], MAD1L1 is the 7th most significant gene among 108 identified genes 

(8.2 × 10−15). MAD1L1 also appeared as a schizophrenia locus [rs10226475, P = 5.06 × 

10−8, Consortium, The Schizophrenia Psychiatric Genome-Wide Association Study 

(GWAS), 2011]. Biologically, MAD1L1 is in a human accelerated region which is very 

different between humans and chimpanzees [Pollard et al., 2006], suggesting it plays an 

important role in human-specific traits.

In addition, the BLVS method could identify SNP-sets with potential interest. The gene 

VAT1L is near the other SNP-set with posterior inclusion probability greater than 0.5. 

VAT1L is seldom reported in GWAS of schizophrenia. However, a region including VAT1L 

was reported in a genome-wide linkage study regarding attention deficit hyperactivity 

disorder [ADHD, Zhou et al., 2008]. In addition, according to the Mouse Genome 

Informatics [Blake et al., 2014], VAT1L is related to behavior and neurological phenotypes; 

as such it may represent an interesting candidate gene for future studies.
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The number of overlapping genes discovered in the two independent studies is small, which 

is likely caused by the low detection power, the large number of potential causal SNPs, and 

the discrepancy of the genotyping arrays. The detection power of the two studies is limited 

by their sample sizes. In addition, the number of causal SNPs/SNP-sets are potentially large 

for Schizophrenia [Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014]. The overlap is less likely to happen when the number of significant genes is small 

while the number of causal genes is large. Moreover, we compared the genotype coverage of 

the two platforms, i.e., Affymetrix 6.0 (sw2-sw4) and Illumina OmniExpress arrays (sw5-

sw6). About 26% SNPs in sw2-sw4 and 22% SNPs in sw5-sw6 are common across the two 

platforms. Consequently, the SNP-sets in sw2-sw4 and sw5-sw6 are quite different.

4 Discussion

We have developed a linear mixed effects model and an efficient Bayesian latent variable 

selection procedure for studying the simultaneous association between tens of thousands of 

SNP-sets and a complex trait. Our simulation studies have demonstrated that the multiple 

SNP-sets association is more powerful than other regularization methods for high dimension 

data and the marginal kernel method in many cases considered. Using subjects from the 

ADNI project, we have studied the association between volumes of different ROIs of human 

brains and SNP-sets based on LD blocks and genes. In addition, we analyzed the Swedish 

schizophrenia dataset with our SNP-sets association approach. Causal LD blocks and genes 

for different traits are identified. Some blocks are well studied in the literature, while others 

reflect new regions associated with Alzheimer’s disease and schizophrenia.

The current model can be further extended to characterize certain complex features of 

complex traits and genetic data. First, we analyzed the volumes of ROIs separately. 

However, volumes of ROIs are usually correlated. Joint modeling the volumes of ROIs may 

be helpful to achieve better mapping power through borrowing information among 

correlated traits. Second, some identified SNP-sets in the ADNI analysis are associated with 

other diseases. Incorporating diagnostic status of Alzheimer’s disease as a secondary 

phenotype may improve the performance of the association studies. Thirdly, family 

information may be available for highly heritable diseases such as schizophrenia. Compared 

to independent samples, family data may have better controlled environment factors, and 

thus increased power, for example, for detecting causal SNP/SNP-sets. The familial 

correlations can be modeled by additional random effects with appropriate correlation 

structures. Finally, the current model does not directly incorporate nonlinear SNP-sets 

effects or SNPs/SNP-sets interaction, which may help to account for the unexplained 

variation among subjects. The current model uses the linear kernel to form the covariance 

matrix of the latent effects of SNP-sets. Other kernel functions may be considered to address 

these problems.

The estimate of phenotype variance explained (PVE) is useful for revealing the missing 

heritability. Guan and Stephens [2011] studied estimation of PVE extensively with BVS. In 

our model, the PVE can be approximated with the MCMC samples of a, γ and B in model 

(1) similar to Guan and Stephens [2011]. The estimation of PVE depends on several aspects, 

e.g., correctly identifying positive and negative genetic variables, estimation of coefficients, 
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and estimation of latent variables. We focus our study on increasing detection power for 

important SNP-sets in the presence of highly correlated SNPs and small effects. Studying 

PVE with BLVS may be investigated in future studies.

SNP-sets methods have been developed in one way to improve the performance of GWAS 

studies for detecting ungenotyped causal SNPs. In contrast, single SNP analysis may utilize 

genotype imputation to boost power for detecting ungenotyped causal SNPs [Marchini and 

Howie, 2010]. However, SNP-sets methods may offer some advantages. Even with the most 

advanced reference panel [Barrett et al., 2005; Consortium, 2012], some causal SNPs may 

not be able to be successfully imputed. In addition, SNP-sets methods can identify multiple 

SNPs with mild marginal effects, epistatic effects, nonlinear SNP-effects that can be easily 

missed by single SNP methods even with imputed genotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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6 Appendix

6.1 The MCMC algorithm

Let y = (y1, …, yn)T, X = (x1, …, xn)T.  and  be the subvector and submatrix of γ and B 
excluding the jth element and column, respectively. Denote 

, and y− = y − Xa − Bγ.

1.
Sample a from ;

2. Sample ψ from IG(a01 + n/2, a02 + y−Ty−/2);

3. Sample (γ, δ) from P(γ, δ|y, a, B, ψ, σ2);
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4. Sample  from  if δj = 1; or IG(aσ01, aσ02) if δj = 0.

5.
Sample bj from  for j = 1, …, q sequentially, where 

, and  is derived in the next section.

6.2 Efficient sampling of bj

Given that Σj is fixed and known, and rank(Σj) ≪ n, generating bj can be very efficient 

because of the save of matrix factorization of  in each iteration. More specifically, let rj 

= rank(Σj) and , where Qj is a n × rj orthonormal matrix, Vj = diag(vj1, …, 

vjrj) is a diagonal matrix, and vjk > 0 for k = 1, …, rj. Consequently, , where 

, and , for k = 1, …, rj. In each MCMC 

iteration, bj can be generated as follows:

a. Generate  for k = 1, …, rj,

b. Let bj = Qjcj, where cj = (cj1, …, cjrj).

The computation complexity of Step 5 is reduced from O(n3) to O(nrj). Since rj ≪ n, the 

computation is approximately O(n).

6.3 Efficient sampling algorithm for γ and δ

We sample (γ, δ) from P(γ, δ|y, a, B, ψ, σ2) through

a. Sample δ from P(δ|y, a, B, ψ, σ2);

b. Sample γ from P(γ|y, a, B, ψ, δ, σ2);

Let Bδ and γδ containing columns of B and elements of γ corresponding to δj = 1, for j = 1, 

…, q, respectively. Let Σδ0 be the covariance matrix of prior distribution of γδ, |δ| be the 

number of non-zero elements in δ, and γ−δ be the elements of γ corresponding to δj = 0.

where . Marginalizing γδ out leads to

where
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Denote δ−j be the subvector of δ excluding δj. We update δ by conditionally sampling δj 

from P(δj|y, a, ψ, δ−j, B, σ2) for j = 1, …, q. For a certain k ∈ [1, q], without loss of 

generality, we assume that current state δk = 0. Let ηj = δj for j ≠ k, ηk = 1, and η = (η1, …, 

ηq). Let Bη and γη containing columns of B and elements of γη corresponding to ηj = 1, and 

Ση0 be the covariance matrix of prior distribution of γη. R is used to calculate P(δk = 1|y, a, 

ψ, δ−k, B, σ2) = R/(1 + R):

(10)

where

Reorder the number of columns in Bη such that Bη = (Bδ, b̃
k),

where .

It can be shown that |Ση| = (|M̃
δ||mk|)−1. From matrix determinant lemma, 

. Thus, . Denote 

 and .

where the second equation follows the binomial inverse theorem
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Let , and . Equation (10) can be simplified as

(11)

As Σδ is known given that δ is the current state, the computation complexity is reduced from 

O(|δ|3) in (10) to O(|δ|2) in (11). After we get a new sample of δ, we sample , 

and set γ−δ = 0.

When δk = 1, η is the current state and Ση is known, Σδ can be calculated from the binomial 

inverse theorem,

where , and ( ) are submatrices of Ση. And 

equation (11) can be computed accordingly.
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Figure 1. 
ROC curves in case 1. From left to right are scenarios with different increasing heritability. 

From top to bottom are settings 1–3 with different dimensions. The red solid, black dotdash, 

green longdash, blue dashed, and purple twodash lines represent our method, single SNP 

analysis, Lasso, group Lasso, and SKAT with the best kernel, respectively.
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Figure 2. 
ROC curves in case 2. From left to right are scenarios with different increasing heritability. 

From top to bottom are settings 1–3 with different dimensions. The red solid, black dotdash, 

green longdash, blue dashed, and purple twodash lines represent our method, single SNP 

analysis, Lasso, group Lasso, and SKAT with the best kernel, respectively.
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Figure 3. 
Manhattan plots of inclusion probabilities of all SNP-sets in all autosomes for the 

Hippocampal Formation Right. The two lines in the right panel are the thresholds 

corresponding to 0.05 divided by the number of SNPs (upper) and SNP-sets (lower), 

respectively.
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Figure 4. 
Manhattan plots of inclusion probabilities of all SNP-sets in all autosomes for “sw2-sw4” 

and “sw5-sw6” are shown in the first row, respectively. Manhattan plots of p-values of 

SNPs in all autosomes for “sw2-sw4” and “sw5-sw6” are shown in the second row, 

respectively. The two lines are the thresholds corresponding to 0.05 divided by the number 

of SNPs (upper) and SNP-sets (lower), respectively.
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