261 research outputs found

    Imagined 3D Hand Movement Trajectory Decoding from Sensorimotor EEG Rhythms

    Get PDF

    Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations

    Get PDF
    Objective: To date, motion trajectory prediction (MTP) of a limb from non-invasive electroencephalography (EEG) has relied, primarily, on band-pass filtered samples of EEG potentials i.e., the potential time-series model. Most MTP studies involve decoding 2D and 3D arm movements i.e., executed arm movements. Decoding of observed or imagined 3D movements has been demonstrated with limited success and only reported in a few studies. MTP studies normally use EEG potentials filtered in the low delta (~1 Hz) band for reconstructing the trajectory of an executed or an imagined/observed movement. In contrast to MTP, multiclass classification based sensorimotor rhythm brain-computer interfaces aim to classify movements using the power spectral density of mu (8–12 Hz) and beta (12–28 Hz) bands.Approach: We investigated if replacing the standard potentials time-series input with a power spectral density based bandpower time-series improves trajectory decoding accuracy of kinesthetically imagined 3D hand movement tasks (i.e., imagined 3D trajectory of the hand joint) and whether imagined 3D hand movements kinematics are encoded also in mu and beta bands. Twelve naïve subjects were asked to generate or imagine generating pointing movements with their right dominant arm to four targets distributed in 3D space in synchrony with an auditory cue (beep).Main results: Using the bandpower time-series based model, the highest decoding accuracy for motor execution was observed in mu and beta bands whilst for imagined movements the low gamma (28–40 Hz) band was also observed to improve decoding accuracy for some subjects. Moreover, for both (executed and imagined) movements, the bandpower time-series model with mu, beta, and low gamma bands produced significantly higher reconstruction accuracy than the commonly used potential time-series model and delta oscillations.Significance: Contrary to many studies that investigated only executed hand movements and recommend using delta oscillations for decoding directional information of a single limb joint, our findings suggest that motor kinematics for imagined movements are reflected mostly in power spectral density of mu, beta and low gamma bands, and that these bands may be most informative for decoding 3D trajectories of imagined limb movements

    Noninvasive neural decoding of overt and covert hand movement

    Get PDF
    It is generally assumed that the signal-to-noise ratio and information content of neural data acquired noninvasively via magnetoencephalography (MEG) or scalp electroencephalography (EEG) are insufficient to extract detailed information about natural, multi-joint movements of the upper limb. If valid, this assumption could severely limit the practical usage of noninvasive signals in brain-computer interface (BCI) systems aimed at continuous complex control of arm-like prostheses for movement impaired persons. Fortunately this dissertation research casts doubt on the veracity of this assumption by extracting continuous hand kinematics from MEG signals collected during a 2D center-out drawing task (Bradberry et al. 2009, NeuroImage, 47:1691-700) and from EEG signals collected during a 3D center-out reaching task (Bradberry et al. 2010, Journal of Neuroscience, 30:3432-7). In both studies, multiple regression was performed to find a matrix that mapped past and current neural data from multiple sensors to current hand kinematic data (velocity). A novel method was subsequently devised that incorporated the weights of the mapping matrix and the standardized low resolution electromagnetic tomography (sLORETA) software to reveal that the brain sources that encoded hand kinematics in the MEG and EEG studies were corroborated by more traditional studies that required averaging across trials and/or subjects. Encouraged by the favorable results of these off-line decoding studies, a BCI system was developed for on-line decoding of covert movement intentions that provided users with real-time visual feedback of the decoder output. Users were asked to use only their thoughts to move a cursor to acquire one of four targets on a computer screen. With only one training session, subjects were able to accomplish this task. The promising results of this dissertation research significantly advance the state-of-the-art in noninvasive BCI systems

    A comprehensive review on motion trajectory reconstruction for EEG-based brain-computer interface

    Get PDF
    The advance in neuroscience and computer technology over the past decades have made brain-computer interface (BCI) a most promising area of neurorehabilitation and neurophysiology research. Limb motion decoding has gradually become a hot topic in the field of BCI. Decoding neural activity related to limb movement trajectory is considered to be of great help to the development of assistive and rehabilitation strategies for motor-impaired users. Although a variety of decoding methods have been proposed for limb trajectory reconstruction, there does not yet exist a review that covers the performance evaluation of these decoding methods. To alleviate this vacancy, in this paper, we evaluate EEG-based limb trajectory decoding methods regarding their advantages and disadvantages from a variety of perspectives. Specifically, we first introduce the differences in motor execution and motor imagery in limb trajectory reconstruction with different spaces (2D and 3D). Then, we discuss the limb motion trajectory reconstruction methods including experiment paradigm, EEG pre-processing, feature extraction and selection, decoding methods, and result evaluation. Finally, we expound on the open problem and future outlooks

    Development of speech prostheses: current status and recent advances

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Expert Review of Medical Devices on September, 2010, available online: http://www.tandfonline.com/10.1586/erd.10.34.Brain–computer interfaces (BCIs) have been developed over the past decade to restore communication to persons with severe paralysis. In the most severe cases of paralysis, known as locked-in syndrome, patients retain cognition and sensation, but are capable of only slight voluntary eye movements. For these patients, no standard communication method is available, although some can use BCIs to communicate by selecting letters or words on a computer. Recent research has sought to improve on existing techniques by using BCIs to create a direct prediction of speech utterances rather than to simply control a spelling device. Such methods are the first steps towards speech prostheses as they are intended to entirely replace the vocal apparatus of paralyzed users. This article outlines many well known methods for restoration of communication by BCI and illustrates the difference between spelling devices and direct speech prediction or speech prosthesis

    Human Ipsilateral Motor Physiology and Neuroprosthetic Applications in Chronic Stroke

    Get PDF
    Improving the recovery of lost motor function in hemiplegic chronic stroke survivors is a critical need to improve the lives of these patients. Over the last several decades, neuroprosthetic systems have emerged as novel tools with the potential to restore function in a variety of patient populations. While traditional neuroprosthetics have focused on using neural activity contralateral to a moving limb for device control, an alternative control signal may be necessary to develop brain-computer interface (BCI) systems in stroke survivors that suffer damage to the cortical hemisphere contralateral to the affected limb. While movement-related neural activity also occurs in the hemisphere ipsilateral to a moving limb, it is uncertain if these signals can be used within BCI systems. This dissertation examines the motor activity ipsilateral to a moving limb and the potential use of these signals for neuroprosthetic applications in chronic stroke survivors. Patients performed three-dimensional (3D) reaching movements with the arm ipsilateral to an electrocorticography (ECoG) array in order to assess the extent of kinematic information that can be decoded from the cortex ipsilateral to a moving limb. Additionally, patients performed the same task with the arm contralateral to the same ECoG arrays, allowing us to compare the neural representations of contralateral and ipsilateral limb movements. While spectral power changes related to ipsilateral arm movements begin later and are lower in amplitude than power changes related to contralateral arm movements, 3D kinematics from both contralateral and ipsilateral arm trajectories can be decoded with similar accuracies. The ability to decode movement kinematics from the ipsilateral cortical hemisphere demonstrates the potential to use these signals within BCI applications for controlling multiple degrees of freedom. Next we examined the relationship between electrode invasiveness and signal quality. The ability to decode movement kinematics from neural activity was significantly decreased in simulated electroencephalography (EEG) signals relative to ECoG signals, indicating that invasive signals would be necessary to implement BCI systems with multiple degrees of freedom. For ECoG signals, the human dura also causes a significant decrease in signal quality when electrodes with small spatial sizes are used. This tradeoff between signal quality and electrode invasiveness should therefore be taken into account when designing ECoG BCI systems. Finally, chronic stroke survivors used activity associated with affected hand motor intentions, recorded from their unaffected hemisphere using EEG, to control simple BCI systems. This demonstrates that motor signals from the ipsilateral hemisphere are viable for BCI applications, not only in motor-intact patients, but also in chronic stroke survivors. Taken together, these experiments provide initial demonstrations that it is possible to develop BCI systems using the unaffected hemisphere in stroke survivors with multiple degrees of freedom. Further development of these BCI systems may eventually lead to improving function for a significant population of patients

    EEG and ECoG features for Brain Computer Interface in Stroke Rehabilitation

    Get PDF
    The ability of non-invasive Brain-Computer Interface (BCI) to control an exoskeleton was used for motor rehabilitation in stroke patients or as an assistive device for the paralyzed. However, there is still a need to create a more reliable BCI that could be used to control several degrees of Freedom (DoFs) that could improve rehabilitation results. Decoding different movements from the same limb, high accuracy and reliability are some of the main difficulties when using conventional EEG-based BCIs and the challenges we tackled in this thesis. In this PhD thesis, we investigated that the classification of several functional hand reaching movements from the same limb using EEG is possible with acceptable accuracy. Moreover, we investigated how the recalibration could affect the classification results. For this reason, we tested the recalibration in each multi-class decoding for within session, recalibrated between-sessions, and between sessions. It was shown the great influence of recalibrating the generated classifier with data from the current session to improve stability and reliability of the decoding. Moreover, we used a multiclass extension of the Filter Bank Common Spatial Patterns (FBCSP) to improve the decoding accuracy based on features and compared it to our previous study using CSP. Sensorimotor-rhythm-based BCI systems have been used within the same frequency ranges as a way to influence brain plasticity or controlling external devices. However, neural oscillations have shown to synchronize activity according to motor and cognitive functions. For this reason, the existence of cross-frequency interactions produces oscillations with different frequencies in neural networks. In this PhD, we investigated for the first time the existence of cross-frequency coupling during rest and movement using ECoG in chronic stroke patients. We found that there is an exaggerated phase-amplitude coupling between the phase of alpha frequency and the amplitude of gamma frequency, which can be used as feature or target for neurofeedback interventions using BCIs. This coupling has been also reported in another neurological disorder affecting motor function (Parkinson and dystonia) but, to date, it has not been investigated in stroke patients. This finding might change the future design of assistive or therapeuthic BCI systems for motor restoration in stroke patients
    • …
    corecore