14,782 research outputs found

    Image-Based Visualization of Classifier Decision Boundaries

    Get PDF
    Understanding how a classifier partitions a high-dimensional input space and assigns labels to the parts is an important task in machine learning. Current methods for this task mainly use color-coded sample scatterplots, which do not explicitly show the actual decision boundaries or confusion zones. We propose an image-based technique to improve such visualizations. The method samples the 2D space of a dimensionality-reduction projection and color-code relevant classifier outputs, such as the majority class label, the confusion, and the sample density, to render a dense depiction of the high-dimensional decision boundaries. Our technique is simple to implement, handles any classifier, and has only two simple-to-control free parameters. We demonstrate our proposal on several real-world high-dimensional datasets, classifiers, and two different dimensionality reduction methods

    Guided Proofreading of Automatic Segmentations for Connectomics

    Full text link
    Automatic cell image segmentation methods in connectomics produce merge and split errors, which require correction through proofreading. Previous research has identified the visual search for these errors as the bottleneck in interactive proofreading. To aid error correction, we develop two classifiers that automatically recommend candidate merges and splits to the user. These classifiers use a convolutional neural network (CNN) that has been trained with errors in automatic segmentations against expert-labeled ground truth. Our classifiers detect potentially-erroneous regions by considering a large context region around a segmentation boundary. Corrections can then be performed by a user with yes/no decisions, which reduces variation of information 7.5x faster than previous proofreading methods. We also present a fully-automatic mode that uses a probability threshold to make merge/split decisions. Extensive experiments using the automatic approach and comparing performance of novice and expert users demonstrate that our method performs favorably against state-of-the-art proofreading methods on different connectomics datasets.Comment: Supplemental material available at http://rhoana.org/guidedproofreading/supplemental.pd

    SINVAD: Search-based Image Space Navigation for DNN Image Classifier Test Input Generation

    Full text link
    The testing of Deep Neural Networks (DNNs) has become increasingly important as DNNs are widely adopted by safety critical systems. While many test adequacy criteria have been suggested, automated test input generation for many types of DNNs remains a challenge because the raw input space is too large to randomly sample or to navigate and search for plausible inputs. Consequently, current testing techniques for DNNs depend on small local perturbations to existing inputs, based on the metamorphic testing principle. We propose new ways to search not over the entire image space, but rather over a plausible input space that resembles the true training distribution. This space is constructed using Variational Autoencoders (VAEs), and navigated through their latent vector space. We show that this space helps efficiently produce test inputs that can reveal information about the robustness of DNNs when dealing with realistic tests, opening the field to meaningful exploration through the space of highly structured images

    Human gesture classification by brute-force machine learning for exergaming in physiotherapy

    Get PDF
    In this paper, a novel approach for human gesture classification on skeletal data is proposed for the application of exergaming in physiotherapy. Unlike existing methods, we propose to use a general classifier like Random Forests to recognize dynamic gestures. The temporal dimension is handled afterwards by majority voting in a sliding window over the consecutive predictions of the classifier. The gestures can have partially similar postures, such that the classifier will decide on the dissimilar postures. This brute-force classification strategy is permitted, because dynamic human gestures show sufficient dissimilar postures. Online continuous human gesture recognition can classify dynamic gestures in an early stage, which is a crucial advantage when controlling a game by automatic gesture recognition. Also, ground truth can be easily obtained, since all postures in a gesture get the same label, without any discretization into consecutive postures. This way, new gestures can be easily added, which is advantageous in adaptive game development. We evaluate our strategy by a leave-one-subject-out cross-validation on a self-captured stealth game gesture dataset and the publicly available Microsoft Research Cambridge-12 Kinect (MSRC-12) dataset. On the first dataset we achieve an excellent accuracy rate of 96.72%. Furthermore, we show that Random Forests perform better than Support Vector Machines. On the second dataset we achieve an accuracy rate of 98.37%, which is on average 3.57% better then existing methods

    Visual Integration of Data and Model Space in Ensemble Learning

    Full text link
    Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack in comprehensibility, posing a challenge to understand how each model affects the classification outputs and where the errors come from. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce a workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. We then present a use case in which we start with an ensemble automatically selected by a standard ensemble selection algorithm, and show how we can manipulate models and alternative combinations.Comment: 8 pages, 7 picture
    corecore