19,095 research outputs found

    Interactive retrieval of video using pre-computed shot-shot similarities

    Get PDF
    A probabilistic framework for content-based interactive video retrieval is described. The developed indexing of video fragments originates from the probability of the user's positive judgment about key-frames of video shots. Initial estimates of the probabilities are obtained from low-level feature representation. Only statistically significant estimates are picked out, the rest are replaced by an appropriate constant allowing efficient access at search time without loss of search quality and leading to improvement in most experiments. With time, these probability estimates are updated from the relevance judgment of users performing searches, resulting in further substantial increases in mean average precision

    Adaptive image retrieval using a graph model for semantic feature integration

    Get PDF
    The variety of features available to represent multimedia data constitutes a rich pool of information. However, the plethora of data poses a challenge in terms of feature selection and integration for effective retrieval. Moreover, to further improve effectiveness, the retrieval model should ideally incorporate context-dependent feature representations to allow for retrieval on a higher semantic level. In this paper we present a retrieval model and learning framework for the purpose of interactive information retrieval. We describe how semantic relations between multimedia objects based on user interaction can be learnt and then integrated with visual and textual features into a unified framework. The framework models both feature similarities and semantic relations in a single graph. Querying in this model is implemented using the theory of random walks. In addition, we present ideas to implement short-term learning from relevance feedback. Systematic experimental results validate the effectiveness of the proposed approach for image retrieval. However, the model is not restricted to the image domain and could easily be employed for retrieving multimedia data (and even a combination of different domains, eg images, audio and text documents)

    An adaptive technique for content-based image retrieval

    Get PDF
    We discuss an adaptive approach towards Content-Based Image Retrieval. It is based on the Ostensive Model of developing information needs—a special kind of relevance feedback model that learns from implicit user feedback and adds a temporal notion to relevance. The ostensive approach supports content-assisted browsing through visualising the interaction by adding user-selected images to a browsing path, which ends with a set of system recommendations. The suggestions are based on an adaptive query learning scheme, in which the query is learnt from previously selected images. Our approach is an adaptation of the original Ostensive Model based on textual features only, to include content-based features to characterise images. In the proposed scheme textual and colour features are combined using the Dempster-Shafer theory of evidence combination. Results from a user-centred, work-task oriented evaluation show that the ostensive interface is preferred over a traditional interface with manual query facilities. This is due to its ability to adapt to the user's need, its intuitiveness and the fluid way in which it operates. Studying and comparing the nature of the underlying information need, it emerges that our approach elicits changes in the user's need based on the interaction, and is successful in adapting the retrieval to match the changes. In addition, a preliminary study of the retrieval performance of the ostensive relevance feedback scheme shows that it can outperform a standard relevance feedback strategy in terms of image recall in category search

    An adaptive approach for image organisation and retrieval

    Get PDF
    We propose and evaluate an adaptive approach towards content-based image retrieval (CBIR), which is based on the Ostensive Model of developing information needs. We use ostensive relevance to capture the user's current interest and tailor the retrieval accordingly. Our approach supports content-assisted browsing, by incorporating an adaptive query learning scheme based on implicit feedback from the user. Textual and colour features are employed to characterise images. Evidence from these features are combined using the Dempster-Shafer theory of evidence combination. Results from a user-centred, task-oriented evaluation show that the ostensive interface is preferred over a traditional interface with manual query facilities. Its strengths are considered to lie in its ability to adapt to the user's need, and its very intuitive and fluid way of operation

    EGO: a personalised multimedia management tool

    Get PDF
    The problems of Content-Based Image Retrieval (CBIR) sys- tems can be attributed to the semantic gap between the low-level data representation and the high-level concepts the user associates with images, on the one hand, and the time-varying and often vague nature of the underlying information need, on the other. These problems can be addressed by improving the interaction between the user and the system. In this paper, we sketch the development of CBIR interfaces, and introduce our view on how to solve some of the problems of the studied interfaces. To address the semantic gap and long-term multifaceted information needs, we propose a "retrieval in context" system. EGO is a tool for the management of image collections, supporting the user through personalisation and adaptation. We will describe how it learns from the user's personal organisation, allowing it to recommend relevant images to the user. The recommendation algorithm is detailed, which is based on relevance feedback techniques

    An explorative study of interface support for image searching

    Get PDF
    In this paper we study interfaces for image retrieval systems. Current image retrieval interfaces are limited to providing query facilities and result presentation. The user can inspect the results and possibly provide feedback on their relevance for the current query. Our approach, in contrast, encourages the user to group and organise their search results and thus provide more fine-grained feedback for the system. It combines the search and management process, which - according to our hypothesis - helps the user to onceptualise their search tasks and to overcome the query formulation problem. An evaluation, involving young design-professionals and di®erent types of information seeking scenarios, shows that the proposed approach succeeds in encouraging the user to conceptualise their tasks and that it leads to increased user satisfaction. However, it could not be shown to increase performance. We identify the problems in the current setup, which when eliminated should lead to more effective searching overall

    Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval

    Get PDF
    Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVM's optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance

    Glasgow University at TRECVID 2006

    Get PDF
    In the first part of this paper we describe our experiments in the automatic and interactive search tasks of TRECVID 2006. We submitted five fully automatic runs, including a text baseline, two runs based on visual features, and two runs that combine textual and visual features in a graph model. For the interactive search, we have implemented a new video search interface with relevance feedback facilities, based on both textual and visual features. The second part is concerned with our approach to the high-level feature extraction task, based on textual information extracted from speech recogniser and machine translation outputs. They were aligned with shots and associated with high-level feature references. A list of significant words was created for each feature, and it was in turn utilised for identification of a feature during the evaluation
    corecore