33,321 research outputs found

    GraphMatch: Efficient Large-Scale Graph Construction for Structure from Motion

    Full text link
    We present GraphMatch, an approximate yet efficient method for building the matching graph for large-scale structure-from-motion (SfM) pipelines. Unlike modern SfM pipelines that use vocabulary (Voc.) trees to quickly build the matching graph and avoid a costly brute-force search of matching image pairs, GraphMatch does not require an expensive offline pre-processing phase to construct a Voc. tree. Instead, GraphMatch leverages two priors that can predict which image pairs are likely to match, thereby making the matching process for SfM much more efficient. The first is a score computed from the distance between the Fisher vectors of any two images. The second prior is based on the graph distance between vertices in the underlying matching graph. GraphMatch combines these two priors into an iterative "sample-and-propagate" scheme similar to the PatchMatch algorithm. Its sampling stage uses Fisher similarity priors to guide the search for matching image pairs, while its propagation stage explores neighbors of matched pairs to find new ones with a high image similarity score. Our experiments show that GraphMatch finds the most image pairs as compared to competing, approximate methods while at the same time being the most efficient.Comment: Published at IEEE 3DV 201

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization

    Full text link
    Many artificial intelligence (AI) problems naturally map to NP-hard optimization problems. This has the interesting consequence that enabling human-level capability in machines often requires systems that can handle formally intractable problems. This issue can sometimes (but possibly not always) be resolved by building special-purpose heuristic algorithms, tailored to the problem in question. Because of the continued difficulties in automating certain tasks that are natural for humans, there remains a strong motivation for AI researchers to investigate and apply new algorithms and techniques to hard AI problems. Recently a novel class of relevant algorithms that require quantum mechanical hardware have been proposed. These algorithms, referred to as quantum adiabatic algorithms, represent a new approach to designing both complete and heuristic solvers for NP-hard optimization problems. In this work we describe how to formulate image recognition, which is a canonical NP-hard AI problem, as a Quadratic Unconstrained Binary Optimization (QUBO) problem. The QUBO format corresponds to the input format required for D-Wave superconducting adiabatic quantum computing (AQC) processors.Comment: 7 pages, 3 figure

    Fine-grained sketch-based image retrieval by matching deformable part models

    Get PDF
    (c) 2014. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.© 2014. The copyright of this document resides with its authors. An important characteristic of sketches, compared with text, rests with their ability to intrinsically capture object appearance and structure. Nonetheless, akin to traditional text-based image retrieval, conventional sketch-based image retrieval (SBIR) principally focuses on retrieving images of the same category, neglecting the fine-grained characteristics of sketches. In this paper, we advocate the expressiveness of sketches and examine their efficacy under a novel fine-grained SBIR framework. In particular, we study how sketches enable fine-grained retrieval within object categories. Key to this problem is introducing a mid-level sketch representation that not only captures object pose, but also possesses the ability to traverse sketch and image domains. Specifically, we learn deformable part-based model (DPM) as a mid-level representation to discover and encode the various poses in sketch and image domains independently, after which graph matching is performed on DPMs to establish pose correspondences across the two domains. We further propose an SBIR dataset that covers the unique aspects of fine-grained SBIR. Through in-depth experiments, we demonstrate the superior performance of our SBIR framework, and showcase its unique ability in fine-grained retrieval

    Graph matching with a dual-step EM algorithm

    Get PDF
    This paper describes a new approach to matching geometric structure in 2D point-sets. The novel feature is to unify the tasks of estimating transformation geometry and identifying point-correspondence matches. Unification is realized by constructing a mixture model over the bipartite graph representing the correspondence match and by affecting optimization using the EM algorithm. According to our EM framework, the probabilities of structural correspondence gate contributions to the expected likelihood function used to estimate maximum likelihood transformation parameters. These gating probabilities measure the consistency of the matched neighborhoods in the graphs. The recovery of transformational geometry and hard correspondence matches are interleaved and are realized by applying coupled update operations to the expected log-likelihood function. In this way, the two processes bootstrap one another. This provides a means of rejecting structural outliers. We evaluate the technique on two real-world problems. The first involves the matching of different perspective views of 3.5-inch floppy discs. The second example is furnished by the matching of a digital map against aerial images that are subject to severe barrel distortion due to a line-scan sampling process. We complement these experiments with a sensitivity study based on synthetic data

    A Survey on Graph Kernels

    Get PDF
    Graph kernels have become an established and widely-used technique for solving classification tasks on graphs. This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years. We describe and categorize graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice. In an extensive experimental evaluation, we study the classification accuracy of a large suite of graph kernels on established benchmarks as well as new datasets. We compare the performance of popular kernels with several baseline methods and study the effect of applying a Gaussian RBF kernel to the metric induced by a graph kernel. In doing so, we find that simple baselines become competitive after this transformation on some datasets. Moreover, we study the extent to which existing graph kernels agree in their predictions (and prediction errors) and obtain a data-driven categorization of kernels as result. Finally, based on our experimental results, we derive a practitioner's guide to kernel-based graph classification
    • …
    corecore