2 research outputs found

    Registration of polarimetric images for in vivo skin diagnostics

    Get PDF
    SIGNIFICANCE: Mueller matrix (MM) polarimetry is a promising tool for the detection of skin cancer. Polarimetric in vivo measurements often suffer from misalignment of the polarimetric images due to motion, which can lead to false results. AIM: We aim to provide an easy-to-implement polarimetric image data registration method to ensure proper image alignment. APPROACH: A feature-based image registration is implemented for an MM polarimeter for phantom and in vivo human skin measurements. RESULTS: We show that the keypoint-based registration of polarimetric images is necessary for in vivo skin polarimetry to ensure reliable results. Further, we deliver an efficient semiautomated method for the registration of polarimetric images. CONCLUSIONS: Image registration for in vivo polarimetry of human skin is required for improved diagnostics and can be efficiently enhanced with a keypoint-based approach

    Accurate segmentation and registration of skin lesion images to evaluate lesion change

    Full text link
    Skin cancer is a major health problem. There are several techniques to help diagnose skin lesions from a captured image. Computer-aided diagnosis (CAD) systems operate on single images of skin lesions, extracting lesion features to further classify them and help the specialists. Accurate feature extraction, which later on depends on precise lesion segmentation, is key for the performance of these systems. In this paper, we present a skin lesion segmentation algorithm based on a novel adaptation of superpixels techniques and achieve the best reported results for the ISIC 2017 challenge dataset. Additionally, CAD systems have paid little attention to a critical criterion in skin lesion diagnosis: the lesion's evolution. This requires operating on two or more images of the same lesion, captured at different times but with a comparable scale, orientation, and point of view; in other words, an image registration process should first be performed. We also propose in this work, an image registration approach that outperforms top image registration techniques. Combined with the proposed lesion segmentation algorithm, this allows for the accurate extraction of features to assess the evolution of the lesion. We present a case study with the lesion-size feature, paving the way for the development of automatic systems to easily evaluate skin lesion evolutionThis work was supported in part by the Spanish Government (HAVideo, TEC2014-53176-R) and in part by the TEC department (Universidad Autonoma de Madrid
    corecore