2,754 research outputs found

    Augmented Image-Guidance for Transcatheter Aortic Valve Implantation

    Get PDF
    The introduction of transcatheter aortic valve implantation (TAVI), an innovative stent-based technique for delivery of a bioprosthetic valve, has resulted in a paradigm shift in treatment options for elderly patients with aortic stenosis. While there have been major advancements in valve design and access routes, TAVI still relies largely on single-plane fluoroscopy for intraoperative navigation and guidance, which provides only gross imaging of anatomical structures. Inadequate imaging leading to suboptimal valve positioning contributes to many of the early complications experienced by TAVI patients, including valve embolism, coronary ostia obstruction, paravalvular leak, heart block, and secondary nephrotoxicity from contrast use. A potential method of providing improved image-guidance for TAVI is to combine the information derived from intra-operative fluoroscopy and TEE with pre-operative CT data. This would allow the 3D anatomy of the aortic root to be visualized along with real-time information about valve and prosthesis motion. The combined information can be visualized as a `merged\u27 image where the different imaging modalities are overlaid upon each other, or as an `augmented\u27 image, where the location of key target features identified on one image are displayed on a different imaging modality. This research develops image registration techniques to bring fluoroscopy, TEE, and CT models into a common coordinate frame with an image processing workflow that is compatible with the TAVI procedure. The techniques are designed to be fast enough to allow for real-time image fusion and visualization during the procedure, with an intra-procedural set-up requiring only a few minutes. TEE to fluoroscopy registration was achieved using a single-perspective TEE probe pose estimation technique. The alignment of CT and TEE images was achieved using custom-designed algorithms to extract aortic root contours from XPlane TEE images, and matching the shape of these contours to a CT-derived surface model. Registration accuracy was assessed on porcine and human images by identifying targets (such as guidewires or coronary ostia) on the different imaging modalities and measuring the correspondence of these targets after registration. The merged images demonstrated good visual alignment of aortic root structures, and quantitative assessment measured an accuracy of less than 1.5mm error for TEE-fluoroscopy registration and less than 6mm error for CT-TEE registration. These results suggest that the image processing techniques presented have potential for development into a clinical tool to guide TAVI. Such a tool could potentially reduce TAVI complications, reducing morbidity and mortality and allowing for a safer procedure

    GOGMA: Globally-Optimal Gaussian Mixture Alignment

    Full text link
    Gaussian mixture alignment is a family of approaches that are frequently used for robustly solving the point-set registration problem. However, since they use local optimisation, they are susceptible to local minima and can only guarantee local optimality. Consequently, their accuracy is strongly dependent on the quality of the initialisation. This paper presents the first globally-optimal solution to the 3D rigid Gaussian mixture alignment problem under the L2 distance between mixtures. The algorithm, named GOGMA, employs a branch-and-bound approach to search the space of 3D rigid motions SE(3), guaranteeing global optimality regardless of the initialisation. The geometry of SE(3) was used to find novel upper and lower bounds for the objective function and local optimisation was integrated into the scheme to accelerate convergence without voiding the optimality guarantee. The evaluation empirically supported the optimality proof and showed that the method performed much more robustly on two challenging datasets than an existing globally-optimal registration solution.Comment: Manuscript in press 2016 IEEE Conference on Computer Vision and Pattern Recognitio

    Fusion of interventional ultrasound & X-ray

    Get PDF
    In einer immer älter werdenden Bevölkerung wird die Behandlung von strukturellen Herzkrankheiten zunehmend wichtiger. Verbesserte medizinische Bildgebung und die Einführung neuer Kathetertechnologien führten dazu, dass immer mehr herkömmliche chirurgische Eingriffe am offenen Herzen durch minimal invasive Methoden abgelöst werden. Diese modernen Interventionen müssen durch verschiedenste Bildgebungsverfahren navigiert werden. Hierzu werden hauptsächlich Röntgenfluoroskopie und transösophageale Echokardiografie (TEE) eingesetzt. Röntgen bietet eine gute Visualisierung der eingeführten Katheter, was essentiell für eine gute Navigation ist. TEE hingegen bietet die Möglichkeit der Weichteilgewebedarstellung und kann damit vor allem zur Darstellung von anatomischen Strukturen, wie z.B. Herzklappen, genutzt werden. Beide Modalitäten erzeugen Bilder in Echtzeit und werden für die erfolgreiche Durchführung minimal invasiver Herzchirurgie zwingend benötigt. Üblicherweise sind beide Systeme eigenständig und nicht miteinander verbunden. Es ist anzunehmen, dass eine Bildfusion beider Welten einen großen Vorteil für die behandelnden Operateure erzeugen kann, vor allem eine verbesserte Kommunikation im Behandlungsteam. Ebenso können sich aus der Anwendung heraus neue chirurgische Worfklows ergeben. Eine direkte Fusion beider Systeme scheint nicht möglich, da die Bilddaten eine zu unterschiedliche Charakteristik aufweisen. Daher kommt in dieser Arbeit eine indirekte Registriermethode zum Einsatz. Die TEE-Sonde ist während der Intervention ständig im Fluoroskopiebild sichtbar. Dadurch wird es möglich, die Sonde im Röntgenbild zu registrieren und daraus die 3D Position abzuleiten. Der Zusammenhang zwischen Ultraschallbild und Ultraschallsonde wird durch eine Kalibrierung bestimmt. In dieser Arbeit wurde die Methode der 2D-3D Registrierung gewählt, um die TEE Sonde auf 2D Röntgenbildern zu erkennen. Es werden verschiedene Beiträge präsentiert, welche einen herkömmlichen 2D-3D Registrieralgorithmus verbessern. Nicht nur im Bereich der Ultraschall-Röntgen-Fusion, sondern auch im Hinblick auf allgemeine Registrierprobleme. Eine eingeführte Methode ist die der planaren Parameter. Diese verbessert die Robustheit und die Registriergeschwindigkeit, vor allem während der Registrierung eines Objekts aus zwei nicht-orthogonalen Richtungen. Ein weiterer Ansatz ist der Austausch der herkömmlichen Erzeugung von sogenannten digital reconstructed radiographs. Diese sind zwar ein integraler Bestandteil einer 2D-3D Registrierung aber gleichzeitig sehr zeitaufwendig zu berechnen. Es führt zu einem erheblichen Geschwindigkeitsgewinn die herkömmliche Methode durch schnelles Rendering von Dreiecksnetzen zu ersetzen. Ebenso wird gezeigt, dass eine Kombination von schnellen lernbasierten Detektionsalgorithmen und 2D-3D Registrierung die Genauigkeit und die Registrierreichweite verbessert. Zum Abschluss werden die ersten Ergebnisse eines klinischen Prototypen präsentiert, welcher die zuvor genannten Methoden verwendet.Today, in an elderly community, the treatment of structural heart disease will become more and more important. Constant improvements of medical imaging technologies and the introduction of new catheter devices caused the trend to replace conventional open heart surgery by minimal invasive interventions. These advanced interventions need to be guided by different medical imaging modalities. The two main imaging systems here are X-ray fluoroscopy and Transesophageal  Echocardiography (TEE). While X-ray provides a good visualization of inserted catheters, which is essential for catheter navigation, TEE can display soft tissues, especially anatomical structures like heart valves. Both modalities provide real-time imaging and are necessary to lead minimal invasive heart surgery to success. Usually, the two systems are detached and not connected. It is conceivable that a fusion of both worlds can create a strong benefit for the physicians. It can lead to a better communication within the clinical team and can probably enable new surgical workflows. Because of the completely different characteristics of the image data, a direct fusion seems to be impossible. Therefore, an indirect registration of Ultrasound and X-ray images is used. The TEE probe is usually visible in the X-ray image during the described minimal-invasive interventions. Thereby, it becomes possible to register the TEE probe in the fluoroscopic images and to establish its 3D position. The relationship of the Ultrasound image to the Ultrasound probe is known by calibration. To register the TEE probe on 2D X-ray images, a 2D-3D registration approach is chosen in this thesis. Several contributions are presented, which are improving the common 2D-3D registration algorithm for the task of Ultrasound and X-ray fusion, but also for general 2D-3D registration problems. One presented approach is the introduction of planar parameters that increase robustness and speed during the registration of an object on two non-orthogonal views. Another approach is to replace the conventional generation of digital reconstructedradiographs, which is an integral part of 2D-3D registration but also a performance bottleneck, with fast triangular mesh rendering. This will result in a significant performance speed-up. It is also shown that a combination of fast learning-based detection algorithms with 2D-3D registration will increase the accuracy and the capture range, instead of employing them solely to the  registration/detection of a TEE probe. Finally, a first clinical prototype is presented which employs the presented approaches and first clinical results are shown

    Towards Image-Guided Pediatric Atrial Septal Defect Repair

    Get PDF
    Congenital heart disease occurs in 107.6 out of 10,000 live births, with Atrial Septal Defects (ASD) accounting for 10\% of these conditions. Historically, ASDs were treated with open heart surgery using cardiopulmonary bypass, allowing a patch to be sewn over the defect. In 1976, King et al. demonstrated use of a transcatheter occlusion procedure, thus reducing the invasiveness of ASD repair. Localization during these catheter based procedures traditionally has relied on bi-plane fluoroscopy; more recently trans-esophageal echocardiography (TEE) and intra-cardiac echocardiography (ICE) have been used to navigate these procedures. Although there is a high success rate using the transcatheter occlusion procedure, fluoroscopy poses radiation dose risk to both patient and clinician. The impact of this dose to the patients is important as many of those undergoing this procedure are children, who have an increased risk associated with radiation exposure. Their longer life expectancy than adults provides a larger window of opportunity for expressing the damaging effects of ionizing radiation. In addition, epidemiologic studies of exposed populations have demonstrated that children are considerably more sensitive to the carcinogenic effects radiation. Image-guided surgery (IGS) uses pre-operative and intra-operative images to guide surgery or an interventional procedure. Central to every IGS system is a software application capable of processing and displaying patient images, registration between multiple coordinate systems, and interfacing with a tool tracking system. We have developed a novel image-guided surgery framework called Kit for Navigation by Image Focused Exploration (KNIFE). This software system serves as the core technology by which a system for reduction of radiation exposure to pediatric patients was developed. The bulk of the initial work in this research endevaour was the development of KNIFE which itself went through countless iterations before arriving at its current state as per the feature requirements established. Secondly, since this work involved the use of captured medical images and their use in an IGS software suite, a brief analysis of the physics behind the images was conducted. Through this aspect of the work, intrinsic parameters (principal point and focal point) of the fluoroscope were quantified using a 3D grid calibration phantom. A second grid phantom was traversed through the fluoroscopic imaging volume of II and flat panel based systems at 2 cm intervals building a scatter field of the volume to demonstrate pincushion and \u27S\u27 distortion in the images. Effects of projection distortion on the images was assessed by measuring the fiducial registration error (FRE) of each point used in two different registration techniques, where both methods utilized ordinary procrustes analysis but the second used a projection matrix built from the fluoroscopes calculated intrinsic parameters. A case study was performed to test whether the projection registration outperforms the rigid transform only. Using the knowledge generated were able to successfully design and complete mock clinical procedures using cardiac phantom models. These mock trials at the beginning of this work used a single point to represent catheter location but this was eventually replaced with a full shape model that offered numerous advantages. At the conclusion of this work a novel protocol for conducting IG ASD procedures was developed. Future work would involve the construction of novel EM tracked tools, phantom models for other vascular diseases and finally clinical integration and use

    REAL-TIME 4D ULTRASOUND RECONSTRUCTION FOR IMAGE-GUIDED INTRACARDIAC INTERVENTIONS

    Get PDF
    Image-guided therapy addresses the lack of direct vision associated with minimally- invasive interventions performed on the beating heart, but requires effective intraoperative imaging. Gated 4D ultrasound reconstruction using a tracked 2D probe generates a time-series of 3D images representing the beating heart over the cardiac cycle. These images have a relatively high spatial resolution and wide field of view, and ultrasound is easily integrated into the intraoperative environment. This thesis presents a real-time 4D ultrasound reconstruction system incorporated within an augmented reality environment for surgical guidance, whose incremental visualization reduces common acquisition errors. The resulting 4D ultrasound datasets are intended for visualization or registration to preoperative images. A human factors experiment demonstrates the advantages of real-time ultrasound reconstruction, and accuracy assessments performed both with a dynamic phantom and intraoperatively reveal RMS localization errors of 2.5-2.7 mm, and 0.8 mm, respectively. Finally, clinical applicability is demonstrated by both porcine and patient imaging

    Virtual and Augmented Reality Techniques for Minimally Invasive Cardiac Interventions: Concept, Design, Evaluation and Pre-clinical Implementation

    Get PDF
    While less invasive techniques have been employed for some procedures, most intracardiac interventions are still performed under cardiopulmonary bypass, on the drained, arrested heart. The progress toward off-pump intracardiac interventions has been hampered by the lack of adequate visualization inside the beating heart. This thesis describes the development, assessment, and pre-clinical implementation of a mixed reality environment that integrates pre-operative imaging and modeling with surgical tracking technologies and real-time ultrasound imaging. The intra-operative echo images are augmented with pre-operative representations of the cardiac anatomy and virtual models of the delivery instruments tracked in real time using magnetic tracking technologies. As a result, the otherwise context-less images can now be interpreted within the anatomical context provided by the anatomical models. The virtual models assist the user with the tool-to-target navigation, while real-time ultrasound ensures accurate positioning of the tool on target, providing the surgeon with sufficient information to ``see\u27\u27 and manipulate instruments in absence of direct vision. Several pre-clinical acute evaluation studies have been conducted in vivo on swine models to assess the feasibility of the proposed environment in a clinical context. Following direct access inside the beating heart using the UCI, the proposed mixed reality environment was used to provide the necessary visualization and navigation to position a prosthetic mitral valve on the the native annulus, or to place a repair patch on a created septal defect in vivo in porcine models. Following further development and seamless integration into the clinical workflow, we hope that the proposed mixed reality guidance environment may become a significant milestone toward enabling minimally invasive therapy on the beating heart

    Hand-Eye Calibration of a Robot -UltraSound Probe System without any 3D Localizers

    No full text
    International audience3D UltraSound (US) probes are used in clinical applications for their ease of use and ability to obtain intra-operative volumes. In surgical navigation applications a calibration step is needed to localize the probe in a general coordinate system. This paper presents a new hand-eye calibration method using directly the kinematic model of a robot and US volume registration data that does not require any 3D localizers. First results show a targeting error of 2.34 mm on an experimental setup using manual segmentation of five beads in ten US volumes

    Exploiting Temporal Image Information in Minimally Invasive Surgery

    Get PDF
    Minimally invasive procedures rely on medical imaging instead of the surgeons direct vision. While preoperative images can be used for surgical planning and navigation, once the surgeon arrives at the target site real-time intraoperative imaging is needed. However, acquiring and interpreting these images can be challenging and much of the rich temporal information present in these images is not visible. The goal of this thesis is to improve image guidance for minimally invasive surgery in two main areas. First, by showing how high-quality ultrasound video can be obtained by integrating an ultrasound transducer directly into delivery devices for beating heart valve surgery. Secondly, by extracting hidden temporal information through video processing methods to help the surgeon localize important anatomical structures. Prototypes of delivery tools, with integrated ultrasound imaging, were developed for both transcatheter aortic valve implantation and mitral valve repair. These tools provided an on-site view that shows the tool-tissue interactions during valve repair. Additionally, augmented reality environments were used to add more anatomical context that aids in navigation and in interpreting the on-site video. Other procedures can be improved by extracting hidden temporal information from the intraoperative video. In ultrasound guided epidural injections, dural pulsation provides a cue in finding a clear trajectory to the epidural space. By processing the video using extended Kalman filtering, subtle pulsations were automatically detected and visualized in real-time. A statistical framework for analyzing periodicity was developed based on dynamic linear modelling. In addition to detecting dural pulsation in lumbar spine ultrasound, this approach was used to image tissue perfusion in natural video and generate ventilation maps from free-breathing magnetic resonance imaging. A second statistical method, based on spectral analysis of pixel intensity values, allowed blood flow to be detected directly from high-frequency B-mode ultrasound video. Finally, pulsatile cues in endoscopic video were enhanced through Eulerian video magnification to help localize critical vasculature. This approach shows particular promise in identifying the basilar artery in endoscopic third ventriculostomy and the prostatic artery in nerve-sparing prostatectomy. A real-time implementation was developed which processed full-resolution stereoscopic video on the da Vinci Surgical System
    corecore