21,336 research outputs found

    Single Frame Image super Resolution using Learned Directionlets

    Full text link
    In this paper, a new directionally adaptive, learning based, single image super resolution method using multiple direction wavelet transform, called Directionlets is presented. This method uses directionlets to effectively capture directional features and to extract edge information along different directions of a set of available high resolution images .This information is used as the training set for super resolving a low resolution input image and the Directionlet coefficients at finer scales of its high-resolution image are learned locally from this training set and the inverse Directionlet transform recovers the super-resolved high resolution image. The simulation results showed that the proposed approach outperforms standard interpolation techniques like Cubic spline interpolation as well as standard Wavelet-based learning, both visually and in terms of the mean squared error (mse) values. This method gives good result with aliased images also.Comment: 14 pages,6 figure

    Image Reconstruction from Undersampled Confocal Microscopy Data using Multiresolution Based Maximum Entropy Regularization

    Full text link
    We consider the problem of reconstructing 2D images from randomly under-sampled confocal microscopy samples. The well known and widely celebrated total variation regularization, which is the L1 norm of derivatives, turns out to be unsuitable for this problem; it is unable to handle both noise and under-sampling together. This issue is linked with the notion of phase transition phenomenon observed in compressive sensing research, which is essentially the break-down of total variation methods, when sampling density gets lower than certain threshold. The severity of this breakdown is determined by the so-called mutual incoherence between the derivative operators and measurement operator. In our problem, the mutual incoherence is low, and hence the total variation regularization gives serious artifacts in the presence of noise even when the sampling density is not very low. There has been very few attempts in developing regularization methods that perform better than total variation regularization for this problem. We develop a multi-resolution based regularization method that is adaptive to image structure. In our approach, the desired reconstruction is formulated as a series of coarse-to-fine multi-resolution reconstructions; for reconstruction at each level, the regularization is constructed to be adaptive to the image structure, where the information for adaption is obtained from the reconstruction obtained at coarser resolution level. This adaptation is achieved by using maximum entropy principle, where the required adaptive regularization is determined as the maximizer of entropy subject to the information extracted from the coarse reconstruction as constraints. We demonstrate the superiority of the proposed regularization method over existing ones using several reconstruction examples

    Deep Reflectance Maps

    Get PDF
    Undoing the image formation process and therefore decomposing appearance into its intrinsic properties is a challenging task due to the under-constraint nature of this inverse problem. While significant progress has been made on inferring shape, materials and illumination from images only, progress in an unconstrained setting is still limited. We propose a convolutional neural architecture to estimate reflectance maps of specular materials in natural lighting conditions. We achieve this in an end-to-end learning formulation that directly predicts a reflectance map from the image itself. We show how to improve estimates by facilitating additional supervision in an indirect scheme that first predicts surface orientation and afterwards predicts the reflectance map by a learning-based sparse data interpolation. In order to analyze performance on this difficult task, we propose a new challenge of Specular MAterials on SHapes with complex IllumiNation (SMASHINg) using both synthetic and real images. Furthermore, we show the application of our method to a range of image-based editing tasks on real images.Comment: project page: http://homes.esat.kuleuven.be/~krematas/DRM
    corecore