2,098 research outputs found

    Sobolev gradients and image interpolation

    Full text link
    We present here a new image inpainting algorithm based on the Sobolev gradient method in conjunction with the Navier-Stokes model. The original model of Bertalmio et al is reformulated as a variational principle based on the minimization of a well chosen functional by a steepest descent method. This provides an alternative of the direct solving of a high-order partial differential equation and, consequently, allows to avoid complicated numerical schemes (min-mod limiters or anisotropic diffusion). We theoretically analyze our algorithm in an infinite dimensional setting using an evolution equation and obtain global existence and uniqueness results as well as the existence of an ω\omega-limit. Using a finite difference implementation, we demonstrate using various examples that the Sobolev gradient flow, due to its smoothing and preconditioning properties, is an effective tool for use in the image inpainting problem

    Inpainting of Cyclic Data using First and Second Order Differences

    Full text link
    Cyclic data arise in various image and signal processing applications such as interferometric synthetic aperture radar, electroencephalogram data analysis, and color image restoration in HSV or LCh spaces. In this paper we introduce a variational inpainting model for cyclic data which utilizes our definition of absolute cyclic second order differences. Based on analytical expressions for the proximal mappings of these differences we propose a cyclic proximal point algorithm (CPPA) for minimizing the corresponding functional. We choose appropriate cycles to implement this algorithm in an efficient way. We further introduce a simple strategy to initialize the unknown inpainting region. Numerical results both for synthetic and real-world data demonstrate the performance of our algorithm.Comment: accepted Converence Paper at EMMCVPR'1
    corecore