5 research outputs found

    Fast and robust image feature matching methods for computer vision applications

    Get PDF
    Service robotic systems are designed to solve tasks such as recognizing and manipulating objects, understanding natural scenes, navigating in dynamic and populated environments. It's immediately evident that such tasks cannot be modeled in all necessary details as easy as it is with industrial robot tasks; therefore, service robotic system has to have the ability to sense and interact with the surrounding physical environment through a multitude of sensors and actuators. Environment sensing is one of the core problems that limit the deployment of mobile service robots since existing sensing systems are either too slow or too expensive. Visual sensing is the most promising way to provide a cost effective solution to the mobile robot sensing problem. It's usually achieved using one or several digital cameras placed on the robot or distributed in its environment. Digital cameras are information rich sensors and are relatively inexpensive and can be used to solve a number of key problems for robotics and other autonomous intelligent systems, such as visual servoing, robot navigation, object recognition, pose estimation, and much more. The key challenges to taking advantage of this powerful and inexpensive sensor is to come up with algorithms that can reliably and quickly extract and match the useful visual information necessary to automatically interpret the environment in real-time. Although considerable research has been conducted in recent years on the development of algorithms for computer and robot vision problems, there are still open research challenges in the context of the reliability, accuracy and processing time. Scale Invariant Feature Transform (SIFT) is one of the most widely used methods that has recently attracted much attention in the computer vision community due to the fact that SIFT features are highly distinctive, and invariant to scale, rotation and illumination changes. In addition, SIFT features are relatively easy to extract and to match against a large database of local features. Generally, there are two main drawbacks of SIFT algorithm, the first drawback is that the computational complexity of the algorithm increases rapidly with the number of key-points, especially at the matching step due to the high dimensionality of the SIFT feature descriptor. The other one is that the SIFT features are not robust to large viewpoint changes. These drawbacks limit the reasonable use of SIFT algorithm for robot vision applications since they require often real-time performance and dealing with large viewpoint changes. This dissertation proposes three new approaches to address the constraints faced when using SIFT features for robot vision applications, Speeded up SIFT feature matching, robust SIFT feature matching and the inclusion of the closed loop control structure into object recognition and pose estimation systems. The proposed methods are implemented and tested on the FRIEND II/III service robotic system. The achieved results are valuable to adapt SIFT algorithm to the robot vision applications

    Effective and efficient kernel-based image representations for classification and retrieval

    Get PDF
    Image representation is a challenging task. In particular, in order to obtain better performances in different image processing applications such as video surveillance, autonomous driving, crime scene detection and automatic inspection, effective and efficient image representation is a fundamental need. The performance of these applications usually depends on how accurately images are classified into their corresponding groups or how precisely relevant images are retrieved from a database based on a query. Accuracy in image classification and precision in image retrieval depend on the effectiveness of image representation. Existing image representation methods have some limitations. For example, spatial pyramid matching, which is a popular method incorporating spatial information in image-level representation, has not been fully studied to date. In addition, the strengths of pyramid match kernel and spatial pyramid matching are not combined for better image matching. Kernel descriptors based on gradient, colour and shape overcome the limitations of histogram-based descriptors, but suffer from information loss, noise effects and high computational complexity. Furthermore, the combined performance of kernel descriptors has limitations related to computational complexity, higher dimensionality and lower effectiveness. Moreover, the potential of a global texture descriptor which is based on human visual perception has not been fully explored to date. Therefore, in this research project, kernel-based effective and efficient image representation methods are proposed to address the above limitations. An enhancement is made to spatial pyramid matching in terms of improved rotation invariance. This is done by investigating different partitioning schemes suitable to achieve rotation-invariant image representation and the proposal of a weight function for appropriate level contribution in image matching. In addition, the strengths of pyramid match kernel and spatial pyramid are combined to enhance matching accuracy between images. The existing kernel descriptors are modified and improved to achieve greater effectiveness, minimum noise effects, less dimensionality and lower computational complexity. A novel fusion approach is also proposed to combine the information related to all pixel attributes, before the descriptor extraction stage. Existing kernel descriptors are based only on gradient, colour and shape information. In this research project, a texture-based kernel descriptor is proposed by modifying an existing popular global texture descriptor. Finally, all the contributions are evaluated in an integrated system. The performances of the proposed methods are qualitatively and quantitatively evaluated on two to four different publicly available image databases. The experimental results show that the proposed methods are more effective and efficient in image representation than existing benchmark methods.Doctor of Philosoph

    In-house indexing of periodical literature : a study of university libraries in Kenya

    Get PDF
    The present study investigated identification, access and usage of periodicals in university libraries in Kenya, with a view of recommending a tool for assisting users to identify information. Using questionnaires completed by 316 university library users and 27 librarians, backed with participant observations, document analysis as well as interviews, it was found that usage of periodicals was low as most users browse through periodicals to identify information, a method that is not effective. In-house indexing was investigated and found to be an effective tool in facilitating access to relevant information. The study recommends establishment of in-house indexing programs and databases in university libraries; formulation of consistent indexing policies to achieve quality indexing; and that indexing should be focused on both content and user requirements by specifying points- of- view, and study methodologies to enhance retrieval of relevant information.Information ScienceM. A. (Information Science

    Image indexing and retrieval based on vector quantization

    No full text
    Abstract not availabl

    Image indexing and retrieval based on vector quantization

    No full text
    Abstract not availabl
    corecore