2,100,718 research outputs found

    Validating Dose Uncertainty Estimates Produced by AUTODIRECT: An Automated Program to Evaluate Deformable Image Registration Accuracy.

    Get PDF
    Deformable image registration is a powerful tool for mapping information, such as radiation therapy dose calculations, from one computed tomography image to another. However, deformable image registration is susceptible to mapping errors. Recently, an automated deformable image registration evaluation of confidence tool was proposed to predict voxel-specific deformable image registration dose mapping errors on a patient-by-patient basis. The purpose of this work is to conduct an extensive analysis of automated deformable image registration evaluation of confidence tool to show its effectiveness in estimating dose mapping errors. The proposed format of automated deformable image registration evaluation of confidence tool utilizes 4 simulated patient deformations (3 B-spline-based deformations and 1 rigid transformation) to predict the uncertainty in a deformable image registration algorithm's performance. This workflow is validated for 2 DIR algorithms (B-spline multipass from Velocity and Plastimatch) with 1 physical and 11 virtual phantoms, which have known ground-truth deformations, and with 3 pairs of real patient lung images, which have several hundred identified landmarks. The true dose mapping error distributions closely followed the Student t distributions predicted by automated deformable image registration evaluation of confidence tool for the validation tests: on average, the automated deformable image registration evaluation of confidence tool-produced confidence levels of 50%, 68%, and 95% contained 48.8%, 66.3%, and 93.8% and 50.1%, 67.6%, and 93.8% of the actual errors from Velocity and Plastimatch, respectively. Despite the sparsity of landmark points, the observed error distribution from the 3 lung patient data sets also followed the expected error distribution. The dose error distributions from automated deformable image registration evaluation of confidence tool also demonstrate good resemblance to the true dose error distributions. Automated deformable image registration evaluation of confidence tool was also found to produce accurate confidence intervals for the dose-volume histograms of the deformed dose

    The Eurovision St Andrews collection of photographs

    Get PDF
    This report describes the Eurovision image collection compiled for the ImageCLEF (Cross Language Evaluation Forum) evaluation exercise. The image collection consists of around 30,000 photographs from the collection provided by the University of St Andrews Library. The construction and composition of this unique image collection are described, together with the necessary information to obtain and use the image collection

    Novel Evaluation Metrics for Seam Carving based Image Retargeting

    Full text link
    Image retargeting effectively resizes images by preserving the recognizability of important image regions. Most of retargeting methods rely on good importance maps as a cue to retain or remove certain regions in the input image. In addition, the traditional evaluation exhaustively depends on user ratings. There is a legitimate need for a methodological approach for evaluating retargeted results. Therefore, in this paper, we conduct a study and analysis on the prominent method in image retargeting, Seam Carving. First, we introduce two novel evaluation metrics which can be considered as the proxy of user ratings. Second, we exploit salient object dataset as a benchmark for this task. We then investigate different types of importance maps for this particular problem. The experiments show that humans in general agree with the evaluation metrics on the retargeted results and some importance map methods are consistently more favorable than others.Comment: 5 page

    Dublin City University at CLEF 2004: experiments with the ImageCLEF St Andrew's collection

    Get PDF
    For the CLEF 2004 ImageCLEF St Andrew's Collection task the Dublin City University group carried out three sets of experiments: standard cross-language information retrieval (CLIR) runs using topic translation via machine translation (MT), combination of this run with image matching results from the VIPER system, and a novel document rescoring approach based on automatic MT evaluation metrics. Our standard MT-based CLIR works well on this task. Encouragingly combination with image matching lists is also observed to produce small positive changes in the retrieval output. However, rescoring using the MT evaluation metrics in their current form significantly reduced retrieval effectiveness

    Objective Evaluation Criteria for Shooting Quality of Stereo Cameras over Short Distance

    Get PDF
    Stereo cameras are the basic tools used to obtain stereoscopic image pairs, which can lead to truly great image quality. However, some inappropriate shooting conditions may cause discomfort while viewing stereo images. It is therefore considerably necessary to establish the perceptual criteria that can be used to evaluate the shooting quality of stereo cameras. This article proposes objective quality evaluation criteria based on the characteristics of parallel and toed-in camera configurations. Considering the different internal structures and basic shooting principles, this paper focuses on short-distance shooting conditions and establishes assessment criteria for both parallel and toed-in camera configurations. Experimental results show that the proposed evaluation criteria can predict the visual perception of stereoscopic images and effectively evaluate stereoscopic image quality

    Image segmentation evaluation using an integrated framework

    Get PDF
    In this paper we present a general framework we have developed for running and evaluating automatic image and video segmentation algorithms. This framework was designed to allow effortless integration of existing and forthcoming image segmentation algorithms, and allows researchers to focus more on the development and evaluation of segmentation methods, relying on the framework for encoding/decoding and visualization. We then utilize this framework to automatically evaluate four distinct segmentation algorithms, and present and discuss the results and statistical findings of the experiment
    corecore