15 research outputs found

    3D Textured Model Encryption via 3D Lu Chaotic Mapping

    Full text link
    In the coming Virtual/Augmented Reality (VR/AR) era, 3D contents will be popularized just as images and videos today. The security and privacy of these 3D contents should be taken into consideration. 3D contents contain surface models and solid models. The surface models include point clouds, meshes and textured models. Previous work mainly focus on encryption of solid models, point clouds and meshes. This work focuses on the most complicated 3D textured model. We propose a 3D Lu chaotic mapping based encryption method of 3D textured model. We encrypt the vertexes, the polygons and the textures of 3D models separately using the 3D Lu chaotic mapping. Then the encrypted vertices, edges and texture maps are composited together to form the final encrypted 3D textured model. The experimental results reveal that our method can encrypt and decrypt 3D textured models correctly. In addition, our method can resistant several attacks such as brute-force attack and statistic attack.Comment: 13 pages, 7 figures, under review of SCI

    An Image Encryption Algorithm Based on Balanced Pixel and Chaotic Map

    Get PDF
    Image encryption technology has been applied in many fields and is becoming the main way of protecting the image information security. There are also many ways of image encryption. However, the existing encryption algorithms, in order to obtain a better effect of encryption, always need encrypting several times. There is not an effective method to decide the number of encryption times, generally determined by the human eyes. The paper proposes an image encryption algorithm based on chaos and simultaneously proposes a balanced pixel algorithm to determine the times of image encryption. Many simulation experiments have been done including encryption effect and security analysis. Experimental results show that the proposed method is feasible and effective

    Chaos Theory and DNA Computation Based Data Encryption System for E-Healthcare Monitoring System

    Get PDF
    The body area sensor network consists of small motes, such devices are considerably energy constrained, limited computation capabilities, and small size of memory such that most advanced encryption scheme cannot be implemented in this type of sensor network. An encryption algorithm must be designed to be a tradeoff between simple computation and powerful encryption scheme. Our proposed algorithm consists of combination of two approaches DNA computation and chaos theory to improve the one-time pad encryption technique. In this work a small amount of memory capacity is required since acquiring samples were encrypted individually in real time. The proposed algorithm appears to be very secure. In this paper, we will explain briefly the design of the proposed algorithm and show its efficiency through encryption tests. Also the effect of some sample loss due to collision occurs in the communication has been studied. The algorithm has been simulated using MATLAB and tested practically using shimmer sensor network platform. Keywords: chaos theory, DNA computation, Body area sensor network

    Steganographic Model for encrypted messages based on DNA Encoding

    Get PDF
    Information has become an inseparable part of human life. Some information that is considered important, such as state or company documents, require more security to ensure its confidentiality. One way of securing information is by hiding the information in certain media using steganography techniques. Steganography is a method of hiding information into other files to make it invisible. One of the most frequently used steganographic methods is Least Significant Bit (LSB).In this study, the LSB method will be modified using DNA Encoding and Chargaff's Rule. Chargaff's Rule or complementary base pairing rule is used to construct a complementary strand. The modification of the LSB method using DNA encoding and Chargaff's Rule is expected to increase the security of the information.The MSE test results show the average value of the LSB method is 0.000236368, while the average value for the DNA Encoding-based Steganography method is 0.000770917. The average PSNR value for the LSB method was 76.82 dB while the DNA Encoding-based Steganography method had an average value of 70.88 dB. The time of inserting and extracting messages using the Steganography method based on DNA Encoding is relatively longer than the LSB method because of its higher algorithmic complexity. The message security of the DNA Encoding-based Steganography method is better because there is encryption in the algorithm compared to the LSB method which does not have encryption

    A novel conservative chaos driven dynamic DNA coding for image encryption

    Full text link
    In this paper, we propose a novel conservative chaotic standard map-driven dynamic DNA coding (encoding, addition, subtraction and decoding) for the image encryption. The proposed image encryption algorithm is a dynamic DNA coding algorithm i.e., for the encryption of each pixel different rules for encoding, addition/subtraction, decoding etc. are randomly selected based on the pseudorandom sequences generated with the help of the conservative chaotic standard map. We propose a novel way to generate pseudo-random sequences through the conservative chaotic standard map and also test them rigorously through the most stringent test suite of pseudo-randomness, the NIST test suite, before using them in the proposed image encryption algorithm. Our image encryption algorithm incorporates a unique feed-forward and feedback mechanisms to generate and modify the dynamic one-time pixels that are further used for the encryption of each pixel of the plain image, therefore, bringing in the desired sensitivity on plaintext as well as ciphertext. All the controlling pseudorandom sequences used in the algorithm are generated for a different value of the parameter (part of the secret key) with inter-dependency through the iterates of the chaotic map (in the generation process) and therefore possess extreme key sensitivity too. The performance and security analysis has been executed extensively through histogram analysis, correlation analysis, information entropy analysis, DNA sequence-based analysis, perceptual quality analysis, key sensitivity analysis, plaintext sensitivity analysis, etc., The results are promising and prove the robustness of the algorithm against various common cryptanalytic attacks.Comment: 29 pages, 5 figures, 15 table

    Image Encryption Algorithm Based on DNA Encoding and Chaotic Maps

    Get PDF
    We propose a new image encryption algorithm based on DNA sequences combined with chaotic maps. This algorithm has two innovations: (1) it diffuses the pixels by transforming the nucleotides into corresponding base pairs a random number of times and (2) it confuses the pixels by a chaotic index based on a chaotic map. For any size of the original grayscale image, the rows and columns are fist exchanged by the arrays generated by a logistic chaotic map. Secondly, each pixel that has been confused is encoded into four nucleotides according to the DNA coding. Thirdly, each nucleotide is transformed into the corresponding base pair a random number of time(s) by a series of iterative computations based on Chebyshev’s chaotic map. Experimental results indicate that the key account of this algorithm is 1.536 × 10127, the correlation coefficient of a 256 × 256 Lena image between, before, and after the encryption processes was 0.0028, and the information entropy of the encrypted image was 7.9854. These simulation results and security analysis show that the proposed algorithm not only has good encryption effect, but also has the ability to repel exhaustive, statistical, differential, and noise attacks

    A Novel Latin Square Image Cipher

    Full text link
    In this paper, we introduce a symmetric-key Latin square image cipher (LSIC) for grayscale and color images. Our contributions to the image encryption community include 1) we develop new Latin square image encryption primitives including Latin Square Whitening, Latin Square S-box and Latin Square P-box ; 2) we provide a new way of integrating probabilistic encryption in image encryption by embedding random noise in the least significant image bit-plane; and 3) we construct LSIC with these Latin square image encryption primitives all on one keyed Latin square in a new loom-like substitution-permutation network. Consequently, the proposed LSIC achieve many desired properties of a secure cipher including a large key space, high key sensitivities, uniformly distributed ciphertext, excellent confusion and diffusion properties, semantically secure, and robustness against channel noise. Theoretical analysis show that the LSIC has good resistance to many attack models including brute-force attacks, ciphertext-only attacks, known-plaintext attacks and chosen-plaintext attacks. Experimental analysis under extensive simulation results using the complete USC-SIPI Miscellaneous image dataset demonstrate that LSIC outperforms or reach state of the art suggested by many peer algorithms. All these analysis and results demonstrate that the LSIC is very suitable for digital image encryption. Finally, we open source the LSIC MATLAB code under webpage https://sites.google.com/site/tuftsyuewu/source-code.Comment: 26 pages, 17 figures, and 7 table
    corecore