7,441 research outputs found

    GRASS: Generative Recursive Autoencoders for Shape Structures

    Full text link
    We introduce a novel neural network architecture for encoding and synthesis of 3D shapes, particularly their structures. Our key insight is that 3D shapes are effectively characterized by their hierarchical organization of parts, which reflects fundamental intra-shape relationships such as adjacency and symmetry. We develop a recursive neural net (RvNN) based autoencoder to map a flat, unlabeled, arbitrary part layout to a compact code. The code effectively captures hierarchical structures of man-made 3D objects of varying structural complexities despite being fixed-dimensional: an associated decoder maps a code back to a full hierarchy. The learned bidirectional mapping is further tuned using an adversarial setup to yield a generative model of plausible structures, from which novel structures can be sampled. Finally, our structure synthesis framework is augmented by a second trained module that produces fine-grained part geometry, conditioned on global and local structural context, leading to a full generative pipeline for 3D shapes. We demonstrate that without supervision, our network learns meaningful structural hierarchies adhering to perceptual grouping principles, produces compact codes which enable applications such as shape classification and partial matching, and supports shape synthesis and interpolation with significant variations in topology and geometry.Comment: Corresponding author: Kai Xu ([email protected]

    Context-Aware Embeddings for Automatic Art Analysis

    Full text link
    Automatic art analysis aims to classify and retrieve artistic representations from a collection of images by using computer vision and machine learning techniques. In this work, we propose to enhance visual representations from neural networks with contextual artistic information. Whereas visual representations are able to capture information about the content and the style of an artwork, our proposed context-aware embeddings additionally encode relationships between different artistic attributes, such as author, school, or historical period. We design two different approaches for using context in automatic art analysis. In the first one, contextual data is obtained through a multi-task learning model, in which several attributes are trained together to find visual relationships between elements. In the second approach, context is obtained through an art-specific knowledge graph, which encodes relationships between artistic attributes. An exhaustive evaluation of both of our models in several art analysis problems, such as author identification, type classification, or cross-modal retrieval, show that performance is improved by up to 7.3% in art classification and 37.24% in retrieval when context-aware embeddings are used

    Perceptual Context in Cognitive Hierarchies

    Full text link
    Cognition does not only depend on bottom-up sensor feature abstraction, but also relies on contextual information being passed top-down. Context is higher level information that helps to predict belief states at lower levels. The main contribution of this paper is to provide a formalisation of perceptual context and its integration into a new process model for cognitive hierarchies. Several simple instantiations of a cognitive hierarchy are used to illustrate the role of context. Notably, we demonstrate the use context in a novel approach to visually track the pose of rigid objects with just a 2D camera

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Product recognition in store shelves as a sub-graph isomorphism problem

    Full text link
    The arrangement of products in store shelves is carefully planned to maximize sales and keep customers happy. However, verifying compliance of real shelves to the ideal layout is a costly task routinely performed by the store personnel. In this paper, we propose a computer vision pipeline to recognize products on shelves and verify compliance to the planned layout. We deploy local invariant features together with a novel formulation of the product recognition problem as a sub-graph isomorphism between the items appearing in the given image and the ideal layout. This allows for auto-localizing the given image within the aisle or store and improving recognition dramatically.Comment: Slightly extended version of the paper accepted at ICIAP 2017. More information @project_page --> http://vision.disi.unibo.it/index.php?option=com_content&view=article&id=111&catid=7

    A feedback model of perceptual learning and categorisation

    Get PDF
    Top-down, feedback, influences are known to have significant effects on visual information processing. Such influences are also likely to affect perceptual learning. This article employs a computational model of the cortical region interactions underlying visual perception to investigate possible influences of top-down information on learning. The results suggest that feedback could bias the way in which perceptual stimuli are categorised and could also facilitate the learning of sub-ordinate level representations suitable for object identification and perceptual expertise
    corecore