1,004 research outputs found

    Spatially Directional Predictive Coding for Block-based Compressive Sensing of Natural Images

    Full text link
    A novel coding strategy for block-based compressive sens-ing named spatially directional predictive coding (SDPC) is proposed, which efficiently utilizes the intrinsic spatial cor-relation of natural images. At the encoder, for each block of compressive sensing (CS) measurements, the optimal pre-diction is selected from a set of prediction candidates that are generated by four designed directional predictive modes. Then, the resulting residual is processed by scalar quantiza-tion (SQ). At the decoder, the same prediction is added onto the de-quantized residuals to produce the quantized CS measurements, which is exploited for CS reconstruction. Experimental results substantiate significant improvements achieved by SDPC-plus-SQ in rate distortion performance as compared with SQ alone and DPCM-plus-SQ.Comment: 5 pages, 3 tables, 3 figures, published at IEEE International Conference on Image Processing (ICIP) 2013 Code Avaiable: http://idm.pku.edu.cn/staff/zhangjian/SDPC

    Statistical Compressive Sensing of Gaussian Mixture Models

    Full text link
    A new framework of compressive sensing (CS), namely statistical compressive sensing (SCS), that aims at efficiently sampling a collection of signals that follow a statistical distribution and achieving accurate reconstruction on average, is introduced. For signals following a Gaussian distribution, with Gaussian or Bernoulli sensing matrices of O(k) measurements, considerably smaller than the O(k log(N/k)) required by conventional CS, where N is the signal dimension, and with an optimal decoder implemented with linear filtering, significantly faster than the pursuit decoders applied in conventional CS, the error of SCS is shown tightly upper bounded by a constant times the k-best term approximation error, with overwhelming probability. The failure probability is also significantly smaller than that of conventional CS. Stronger yet simpler results further show that for any sensing matrix, the error of Gaussian SCS is upper bounded by a constant times the k-best term approximation with probability one, and the bound constant can be efficiently calculated. For signals following Gaussian mixture models, SCS with a piecewise linear decoder is introduced and shown to produce for real images better results than conventional CS based on sparse models

    Image Compressive Sensing Recovery Using Adaptively Learned Sparsifying Basis via L0 Minimization

    Full text link
    From many fewer acquired measurements than suggested by the Nyquist sampling theory, compressive sensing (CS) theory demonstrates that, a signal can be reconstructed with high probability when it exhibits sparsity in some domain. Most of the conventional CS recovery approaches, however, exploited a set of fixed bases (e.g. DCT, wavelet and gradient domain) for the entirety of a signal, which are irrespective of the non-stationarity of natural signals and cannot achieve high enough degree of sparsity, thus resulting in poor CS recovery performance. In this paper, we propose a new framework for image compressive sensing recovery using adaptively learned sparsifying basis via L0 minimization. The intrinsic sparsity of natural images is enforced substantially by sparsely representing overlapped image patches using the adaptively learned sparsifying basis in the form of L0 norm, greatly reducing blocking artifacts and confining the CS solution space. To make our proposed scheme tractable and robust, a split Bregman iteration based technique is developed to solve the non-convex L0 minimization problem efficiently. Experimental results on a wide range of natural images for CS recovery have shown that our proposed algorithm achieves significant performance improvements over many current state-of-the-art schemes and exhibits good convergence property.Comment: 31 pages, 4 tables, 12 figures, to be published at Signal Processing, Code available: http://idm.pku.edu.cn/staff/zhangjian/ALSB

    Compressive Sensing Based Bio-Inspired Shape Feature Detection CMOS Imager

    Get PDF
    A CMOS imager integrated circuit using compressive sensing and bio-inspired detection is presented which integrates novel functions and algorithms within a novel hardware architecture enabling efficient on-chip implementation

    Compressed Sensing Inspired Image Reconstruction from Overlapped Projections

    Get PDF
    The key idea discussed in this paper is to reconstruct an image from overlapped projections so that the data acquisition process can be shortened while the image quality remains essentially uncompromised. To perform image reconstruction from overlapped projections, the conventional reconstruction approach (e.g., filtered backprojection (FBP) algorithms) cannot be directly used because of two problems. First, overlapped projections represent an imaging system in terms of summed exponentials, which cannot be transformed into a linear form. Second, the overlapped measurement carries less information than the traditional line integrals. To meet these challenges, we propose a compressive sensing-(CS-) based iterative algorithm for reconstruction from overlapped data. This algorithm starts with a good initial guess, relies on adaptive linearization, and minimizes the total variation (TV). Then, we demonstrated the feasibility of this algorithm in numerical tests
    corecore