102,120 research outputs found

    Constraint algorithm for k-presymplectic Hamiltonian systems. Application to singular field theories

    Get PDF
    The k-symplectic formulation of field theories is especially simple, since only tangent and cotangent bundles are needed in its description. Its defining elements show a close relationship with those in the symplectic formulation of mechanics. It will be shown that this relationship also stands in the presymplectic case. In a natural way, one can mimick the presymplectic constraint algorithm to obtain a constraint algorithm that can be applied to k-presymplectic field theory, and more particularly to the Lagrangian and Hamiltonian formulations of field theories defined by a singular Lagrangian, as well as to the unified Lagrangian-Hamiltonian formalism (Skinner--Rusk formalism) for k-presymplectic field theory. Two examples of application of the algorithm are also analyzed

    Direct and Inverse Computational Methods for Electromagnetic Scattering in Biological Diagnostics

    Full text link
    Scattering theory has had a major roll in twentieth century mathematical physics. Mathematical modeling and algorithms of direct,- and inverse electromagnetic scattering formulation due to biological tissues are investigated. The algorithms are used for a model based illustration technique within the microwave range. A number of methods is given to solve the inverse electromagnetic scattering problem in which the nonlinear and ill-posed nature of the problem are acknowledged.Comment: 61 pages, 5 figure

    Constraint algorithm for k-presymplectic Hamiltonian systems. Application to singular field theories

    Full text link
    The k-symplectic formulation of field theories is especially simple, since only tangent and cotangent bundles are needed in its description. Its defining elements show a close relationship with those in the symplectic formulation of mechanics. It will be shown that this relationship also stands in the presymplectic case. In a natural way, one can mimick the presymplectic constraint algorithm to obtain a constraint algorithm that can be applied to kk-presymplectic field theory, and more particularly to the Lagrangian and Hamiltonian formulations of field theories defined by a singular Lagrangian, as well as to the unified Lagrangian-Hamiltonian formalism (Skinner--Rusk formalism) for k-presymplectic field theory. Two examples of application of the algorithm are also analyzed.Comment: 22 p
    corecore