1,463 research outputs found

    Segmentation of skin lesions in 2D and 3D ultrasound images using a spatially coherent generalized Rayleigh mixture model

    Get PDF
    This paper addresses the problem of jointly estimating the statistical distribution and segmenting lesions in multiple-tissue high-frequency skin ultrasound images. The distribution of multiple-tissue images is modeled as a spatially coherent finite mixture of heavy-tailed Rayleigh distributions. Spatial coherence inherent to biological tissues is modeled by enforcing local dependence between the mixture components. An original Bayesian algorithm combined with a Markov chain Monte Carlo method is then proposed to jointly estimate the mixture parameters and a label-vector associating each voxel to a tissue. More precisely, a hybrid Metropolis-within-Gibbs sampler is used to draw samples that are asymptotically distributed according to the posterior distribution of the Bayesian model. The Bayesian estimators of the model parameters are then computed from the generated samples. Simulation results are conducted on synthetic data to illustrate the performance of the proposed estimation strategy. The method is then successfully applied to the segmentation of in vivo skin tumors in high-frequency 2-D and 3-D ultrasound images

    Estimating the granularity coefficient of a Potts-Markov random field within an MCMC algorithm

    Get PDF
    This paper addresses the problem of estimating the Potts parameter B jointly with the unknown parameters of a Bayesian model within a Markov chain Monte Carlo (MCMC) algorithm. Standard MCMC methods cannot be applied to this problem because performing inference on B requires computing the intractable normalizing constant of the Potts model. In the proposed MCMC method the estimation of B is conducted using a likelihood-free Metropolis-Hastings algorithm. Experimental results obtained for synthetic data show that estimating B jointly with the other unknown parameters leads to estimation results that are as good as those obtained with the actual value of B. On the other hand, assuming that the value of B is known can degrade estimation performance significantly if this value is incorrect. To illustrate the interest of this method, the proposed algorithm is successfully applied to real bidimensional SAR and tridimensional ultrasound images

    Accuracy of MAP segmentation with hidden Potts and Markov mesh prior models via Path Constrained Viterbi Training, Iterated Conditional Modes and Graph Cut based algorithms

    Full text link
    In this paper, we study statistical classification accuracy of two different Markov field environments for pixelwise image segmentation, considering the labels of the image as hidden states and solving the estimation of such labels as a solution of the MAP equation. The emission distribution is assumed the same in all models, and the difference lays in the Markovian prior hypothesis made over the labeling random field. The a priori labeling knowledge will be modeled with a) a second order anisotropic Markov Mesh and b) a classical isotropic Potts model. Under such models, we will consider three different segmentation procedures, 2D Path Constrained Viterbi training for the Hidden Markov Mesh, a Graph Cut based segmentation for the first order isotropic Potts model, and ICM (Iterated Conditional Modes) for the second order isotropic Potts model. We provide a unified view of all three methods, and investigate goodness of fit for classification, studying the influence of parameter estimation, computational gain, and extent of automation in the statistical measures Overall Accuracy, Relative Improvement and Kappa coefficient, allowing robust and accurate statistical analysis on synthetic and real-life experimental data coming from the field of Dental Diagnostic Radiography. All algorithms, using the learned parameters, generate good segmentations with little interaction when the images have a clear multimodal histogram. Suboptimal learning proves to be frail in the case of non-distinctive modes, which limits the complexity of usable models, and hence the achievable error rate as well. All Matlab code written is provided in a toolbox available for download from our website, following the Reproducible Research Paradigm

    Image segmentation and feature extraction for recognizing strokes in tennis game videos

    Get PDF
    This paper addresses the problem of recognizing human actions from video. Particularly, the case of recognizing events in tennis game videos is analyzed. Driven by our domain knowledge, a robust player segmentation algorithm is developed real video data. Further, we introduce a number of novel features to be extracted for our particular application. Different feature combinations are investigated in order to find the optimal one. Finally, recognition results for different classes of tennis strokes using automatic learning capability of Hidden Markov Models (HMMs) are presented. The experimental results demonstrate that our method is close to realizing statistics of tennis games automatically using ordinary TV broadcast videos
    • 

    corecore