182,701 research outputs found
RGB-D datasets using microsoft kinect or similar sensors: a survey
RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms
WordFences: Text localization and recognition
En col·laboració amb la Universitat de Barcelona (UB) i la Universitat Rovira i Virgili (URV)In recent years, text recognition has achieved remarkable success in recognizing scanned
document text. However, word recognition in natural images is still an open problem,
which generally requires time consuming post-processing steps. We present a novel architecture
for individual word detection in scene images based on semantic segmentation.
Our contributions are twofold: the concept of WordFence, which detects border areas
surrounding each individual word and a unique pixelwise weighted softmax loss function
which penalizes background and emphasizes small text regions. WordFence ensures that
each word is detected individually, and the new loss function provides a strong training
signal to both text and word border localization. The proposed technique avoids intensive
post-processing by combining semantic word segmentation with a voting scheme
for merging segmentations of multiple scales, producing an end-to-end word detection
system. We achieve superior localization recall on common benchmark datasets - 92%
recall on ICDAR11 and ICDAR13 and 63% recall on SVT. Furthermore, end-to-end
word recognition achieves state-of-the-art 86% F-Score on ICDAR13
The Visual Social Distancing Problem
One of the main and most effective measures to contain the recent viral
outbreak is the maintenance of the so-called Social Distancing (SD). To comply
with this constraint, workplaces, public institutions, transports and schools
will likely adopt restrictions over the minimum inter-personal distance between
people. Given this actual scenario, it is crucial to massively measure the
compliance to such physical constraint in our life, in order to figure out the
reasons of the possible breaks of such distance limitations, and understand if
this implies a possible threat given the scene context. All of this, complying
with privacy policies and making the measurement acceptable. To this end, we
introduce the Visual Social Distancing (VSD) problem, defined as the automatic
estimation of the inter-personal distance from an image, and the
characterization of the related people aggregations. VSD is pivotal for a
non-invasive analysis to whether people comply with the SD restriction, and to
provide statistics about the level of safety of specific areas whenever this
constraint is violated. We then discuss how VSD relates with previous
literature in Social Signal Processing and indicate which existing Computer
Vision methods can be used to manage such problem. We conclude with future
challenges related to the effectiveness of VSD systems, ethical implications
and future application scenarios.Comment: 9 pages, 5 figures. All the authors equally contributed to this
manuscript and they are listed by alphabetical order. Under submissio
Crowdsourcing in Computer Vision
Computer vision systems require large amounts of manually annotated data to
properly learn challenging visual concepts. Crowdsourcing platforms offer an
inexpensive method to capture human knowledge and understanding, for a vast
number of visual perception tasks. In this survey, we describe the types of
annotations computer vision researchers have collected using crowdsourcing, and
how they have ensured that this data is of high quality while annotation effort
is minimized. We begin by discussing data collection on both classic (e.g.,
object recognition) and recent (e.g., visual story-telling) vision tasks. We
then summarize key design decisions for creating effective data collection
interfaces and workflows, and present strategies for intelligently selecting
the most important data instances to annotate. Finally, we conclude with some
thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in
Computer Graphics and Vision, 201
Deep learning in remote sensing: a review
Standing at the paradigm shift towards data-intensive science, machine
learning techniques are becoming increasingly important. In particular, as a
major breakthrough in the field, deep learning has proven as an extremely
powerful tool in many fields. Shall we embrace deep learning as the key to all?
Or, should we resist a 'black-box' solution? There are controversial opinions
in the remote sensing community. In this article, we analyze the challenges of
using deep learning for remote sensing data analysis, review the recent
advances, and provide resources to make deep learning in remote sensing
ridiculously simple to start with. More importantly, we advocate remote sensing
scientists to bring their expertise into deep learning, and use it as an
implicit general model to tackle unprecedented large-scale influential
challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin
- …
