2,183 research outputs found

    Harvesting Discriminative Meta Objects with Deep CNN Features for Scene Classification

    Get PDF
    Recent work on scene classification still makes use of generic CNN features in a rudimentary manner. In this ICCV 2015 paper, we present a novel pipeline built upon deep CNN features to harvest discriminative visual objects and parts for scene classification. We first use a region proposal technique to generate a set of high-quality patches potentially containing objects, and apply a pre-trained CNN to extract generic deep features from these patches. Then we perform both unsupervised and weakly supervised learning to screen these patches and discover discriminative ones representing category-specific objects and parts. We further apply discriminative clustering enhanced with local CNN fine-tuning to aggregate similar objects and parts into groups, called meta objects. A scene image representation is constructed by pooling the feature response maps of all the learned meta objects at multiple spatial scales. We have confirmed that the scene image representation obtained using this new pipeline is capable of delivering state-of-the-art performance on two popular scene benchmark datasets, MIT Indoor 67~\cite{MITIndoor67} and Sun397~\cite{Sun397}Comment: To Appear in ICCV 201

    Action Recognition by Hierarchical Mid-level Action Elements

    Full text link
    Realistic videos of human actions exhibit rich spatiotemporal structures at multiple levels of granularity: an action can always be decomposed into multiple finer-grained elements in both space and time. To capture this intuition, we propose to represent videos by a hierarchy of mid-level action elements (MAEs), where each MAE corresponds to an action-related spatiotemporal segment in the video. We introduce an unsupervised method to generate this representation from videos. Our method is capable of distinguishing action-related segments from background segments and representing actions at multiple spatiotemporal resolutions. Given a set of spatiotemporal segments generated from the training data, we introduce a discriminative clustering algorithm that automatically discovers MAEs at multiple levels of granularity. We develop structured models that capture a rich set of spatial, temporal and hierarchical relations among the segments, where the action label and multiple levels of MAE labels are jointly inferred. The proposed model achieves state-of-the-art performance in multiple action recognition benchmarks. Moreover, we demonstrate the effectiveness of our model in real-world applications such as action recognition in large-scale untrimmed videos and action parsing

    Geometric Supervision and Deep Structured Models for Image Segmentation

    Get PDF
    The task of semantic segmentation aims at understanding an image at a pixel level. Due to its applicability in many areas, such as autonomous vehicles, robotics and medical surgery assistance, semantic segmentation has become an essential task in image analysis. During the last few years a lot of progress have been made for image segmentation algorithms, mainly due to the introduction of deep learning methods, in particular the use of Convolutional Neural Networks (CNNs). CNNs are powerful for modeling complex connections between input and output data but have two drawbacks when it comes to semantic segmentation. Firstly, CNNs lack the ability to directly model dependent output structures, for instance, explicitly enforcing properties such as label smoothness and coherence. This drawback motivates the use of Conditional Random Fields (CRFs), applied as a post-processing step in semantic segmentation. Secondly, training CNNs requires large amounts of annotated data. For segmentation this amounts to dense, pixel-level, annotations that are very time-consuming to acquire.This thesis summarizes the content of five papers addressing the two aforementioned drawbacks of CNNs. The first two papers present methods on how geometric 3D models can be used to improve segmentation models. The 3D models can be created with little human labour and can be used as a supervisory signal to improve the robustness of semantic segmentation and long-term visual localization methods. The last three papers focuses on models combining CNNs and CRFs for semantic segmentation. The models consist of a CNN capable of learning complex image features coupled with a CRF capable of learning dependencies between output variables. Emphasis has been on creating models that are possible to train end-to-end, giving the CNN and the CRF a chance to learn how to interact and exploit complementary information to achieve better performance
    • …
    corecore