18 research outputs found

    Image Normalization by Complex Moments

    Get PDF
    The role of moments in image normalization and invariant pattern recognition is addressed. The classical idea of the principal axes is analyzed and extended to a more general definition. The relationship between moment-based normalization, moment invariants, and circular harmonics is established. Invariance properties of moments, as opposed to their recognition properties, are identified using a new class of normalization procedures. The application of moment-based normalization in pattern recognition is demonstrated by experiment

    Image Normalization By Complex Moments

    Get PDF

    Image Normalization by Complex Moments

    Full text link

    Contour tracking and corner detection in a logic programming environment

    Get PDF

    Three-dimensional shape characterization for particle aggregates using multiple projective representations

    Get PDF
    Shape descriptors are used extensively in computer vision/automated recognition applications such as fingerprint matching, robotics, character recognition, etc. The conventional two-dimensional shape descriptors used in these applications do not readily lend themselves to compact representations in three dimensions. The situation is even more challenging when one attempts to numerically describe the three-dimensional shapes of a mixture of objects such as in an aggregate mix. The goal of this study is the design, development and validation of automated image processing algorithms that can estimate three-dimensional shape-descriptors for particle aggregates. The thesis demonstrates that a single set of numbers representing a composite three-dimensional shape can be used to characterize all the varying three-dimensional shapes of similar particles in an aggregate mix. The composite shape is obtained by subdividing the problem into a judicious combination of simple techniques - two-dimensional shape description using Fourier and/or invariant moment descriptors, feature extraction using principal component analysis, statistical modeling.and projective reconstruction. The algorithms developed in this thesis are applied for describing the three-dimensional shapes of particle aggregates in sand mixes. Geomaterial response such as shear strength is significantly affected by particle shape - and a numerical description of shape allows for calculation of functional characteristics using other previously established models. Results demonstrating the consistency, separability and uniqueness of the three-dimensional shape descriptor algorithms are presented

    Invariance transformations for processing NDE signals

    Get PDF
    The ultimate objective in nondestructive evaluation (NDE) is the characterization of materials, on the basis of information in the response from energy/material interactions. This is commonly referred to as the inverse problem. Inverse problems are in general ill-posed and full analytical solutions to these problems are seldom tractable. Pragmatic approaches for solving them employ a constrained search technique by limiting the space of all possible solutions. A more modest goal is therefore to use the received signal for characterizing defects in objects in terms of the location, size and shape. However, the NDE signal received by the sensors is influenced not only by the defect, but also by the operational parameters associated with the experiment. This dissertation deals with the subject of invariant pattern recognition techniques that render NDE signals insensitive to operational variables, while at the same time, preserve or enhance defect related information. Such techniques are comprised of invariance transformations that operate on the raw signals prior to interpretation using subsequent defect characterization schemes. Invariance transformations are studied in the context of the magnetostatic flux leakage (MFL) inspection technique, which is the method of choice for inspecting natural gas transmission pipelines buried underground;The magnetic flux leakage signal received by the scanning device is very sensitive to a number of operational parameters. Factors that have a major impact on the signal include those caused by variations in the permeability of the pipe-wall material and the velocity of the inspection tool. This study describes novel approaches to compensate for the effects of these variables;Two types of invariance schemes, feature selection and signal compensation, are studied. In the feature selection approach, the invariance transformation is recast as a problem in interpolation of scattered, multi-dimensional data. A variety of interpolation techniques are explored, the most powerful among them being feed-forward neural networks. The second parametric variation is compensated by using restoration filters. The filter kernels are derived using a constrained, stochastic least square optimization technique or by adaptive methods. Both linear and non-linear filters are studied as tools for signal compensation;Results showing the successful application of these invariance transformations to real and simulated MFL data are presented

    Automated image inspection using wavelet decomposition and fuzzy rule-based classifier

    Get PDF
    A general purpose image inspecting system has been developed for automatic flaw detection in industrial applications. The system has a general purpose image understanding architecture that performs local feature extraction and supervised classification. Local features of an image are extracted from the compactly supported wavelet transform of the image. The features extracted from the wavelet transform provide local harmonic analysis and multi-resolution representation of the image. Image segmentation is achieved by classifying image pixels based on features extracted within a local area near each pixel. The supervised classifier used in the segmentation process is a fuzzy rule-based classifier which is established from the training data. The fuzzy rule base that is used to control the performance of the classifier is optimized by combining similar training data into the same rule. Therefore an optimization is achieved for the established rule base to provide the maximum amount of information with the minimum amount of rules. The experimental results show that the features extracted from the wavelet decomposition give contextual information for the test images. The optimized fuzzy rule-based classifier gives the best performance in both the training and the classification stages. Flaws in the test images are detected automatically by the computer
    corecore